Effect of Al doping on optical properties of ZnO thin films: theory and experiment

Authors

  • M. Kovalenko Ivan Franko National University of Lviv
  • O. Bovgyra Ivan Franko National University of Lviv
  • V. Dzikovskyi Ivan Franko Lviv National University; Lviv Polytechnic National University
  • A. Kashuba Lviv Polytechnic National University
  • H. Ilchuk Lviv Polytechnic National University
  • R. Petrus Lviv Polytechnic National University
  • I. Semkiv Lviv Polytechnic National University

DOI:

https://doi.org/10.15330/pcss.22.1.153-159

Keywords:

Al-doped ZnO, DFT U, optical band gap, optical properties

Abstract

The structural, electronic, and optical properties of zinc oxide thin films with Al-doping have been investigated experimentally and with density functional theory (DFT) calculations. Changes in properties of doped thin films, which are deposited on a glass substrate by a high-frequency magnetron sputtering method, are monitored using X-ray diffraction data and UV measurements. Our theoretical calculations show that the electronic structure of ZnO: Al can be well described by the DFT+U method. The XRD measurements demonstrated the formation of a pure single ZnO phase and Al atoms is well incorporated in the ZnO lattice. Also, we determine the optical constants such as optical dielectric function, refractive index, optical band gap values, extinction coefficient, and optical conductivity of the doping films through transmittance spectra. The calculated results show the change of lattice parameters Al-doped ZnO. The optical band gap of ZnO: Al is increased compared with pure ZnO. Besides, around the Fermi level of Al-doped ZnO was emerged the shallow donor states from mainly 3s-Al states. Our DFT calculations of optical properties Al-doped ZnO agree satisfactorily with the experimentally measured transmittance values.

References

C. R. A. Catlow, S. A. French, A. A. Sokol, A. A. Al-Sunadi and S. M. Woodley, J. Comput. Chem. 29, 2234-2249 (2008) (https://doi.org/10.1002/jcc.21051).

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do_gan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005) (https://doi.org/10.1063/1.1992666).

Y. S. Lee, Y. C. Peng, J. H. Lu, Y. R. Zhu, H. C. Wu, Thin Solid Films 570, 464–470 (2014) (https://doi.org/10.1016/j.tsf.2014.04.037).

H. Kumarakuru, D. Cherns and A. M. Collins, Ceramic International 40, 8389-8395 (2014) (https://doi.org/10.1016/j.ceramint.2014.01.045).

V. Devi, M. Kumar and D. K. Shukla, Superlattices and Microstructures, 83, 431-438 (2015) (https://doi.org/10.1016/j.spmi.2015.03.047).

A. A. Al-Ghamdi, O. A. Al-Hartomy and M. El Okr, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 131, 512-517 (2014) (https://doi.org/10.1016/j.saa.2014.04.020).

R. Petrus, H. Ilchuk, A. Kashuba, I. Semkiv, E. Zmiiovska, F. Honchar, R. Lys, Journal of Nano- and Electronic Physics 11(3), 03020 (2019). (https://doi.org/10.21272/jnep.11(3).03020).

R. Y. Petrus, H. A. Ilchuk, A. I. Kashuba, I. V. Semkiv, E. O. Zmiiovska, Optics and Spectroscopy 126(3), 220 (2019) (https://doi.org/10.1134/S0030400X19030160).

P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, and M. Cococcioni, J. Phys. Condens. Matter 29, 465901 (2017) (https://doi.org/10.1088/1361-648X/aa8f79).

D. Vanderbilt, Phys. Rev. B 41, 7892 (1990) (https://doi.org/10.1103/PhysRevB.41.7892).

C. G. Broyden, IMA Journal of Applied Mathematics 6(3), 222–231 (1970) (https://doi.org/10.1093/imamat/6.3.222).

R. Fletcher, The Computer Journal 24 (3), 23 (1970) (https://doi.org/10.1093/comjnl/13.3.317).

D. Goldfarb, Mathematics of Computation 24, 23 (1970) (https://doi.org/10.1090/S0025-5718-1970-0258249-6).

D. F. Shanno, Mathematics of Computation 24, 647 (1970) (https://doi.org/10.1090/S0025-5718-1970-0274029-X).

N. N. Lathiotakis, A. N. Andriotis, M. Menon, Phys. Rev. B 78, 193311–193314 (2008) (https://doi.org/10.1103/PhysRevB.78.193311).

R. M. Sheetz, I. Ponomareva E. Richter, A. N. Andriotis, M. Menon, Phys. Rev. B 80, 195314 (2009) (https://doi.org/10.1103/PhysRevB.80.195314).

A. Walsh, J. L. F. Da Silva, S. H. Wei, Phys. Rev. Lett. 100, 256401-256404 (2008) (https://doi.org/10.1103/PhysRevLett.100.256401).

O. V. Bovgyra, M. V. Kovalenko, V. Ye. Dzikovskyi, A. P. Vaskiv, M. Ya. Sheremeta, Journal of Nano- and Electronic Physics 12(5), 05003 (2020) (https://doi.org/10.21272/jnep.12(5).05003).

X. Qu, S. Lü, D. Jia, S. Zhou, Q. Meng, Materials Science in Semiconductor Processing 16 (4), 1057-1062 (2013) (https://doi.org/10.1016/j.mssp.2013.04.002).

A. Mang, K. Reimann, St. Rübenacke, Solid State Commun. 94, 251–254 (1995). (https://doi.org/10.1016/0038-1098(95)00054-2).

O. Bovgyra, M. Kovalenko, R. Bovhyra, V. Dzikovskyi, Journal of Physical Studies 23(4), 4301 (2019) (https://doi.org/10.30970/jps.23.4301).

M. Kovalenko, O. Bovgyra, A. Franiv, V. Dzikovskyi, Materials Today: Proceeding (2019) (https://doi.org/10.1016/j.matpr.2019.11.274).

O. Bovgyra, M. Kovalenko, V. Dzikovskyi, and M. Moroz, IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), (Lviv, Ukraine, 2019), p. 726 (https://doi.org/10.1109/UKRCON.2019.8879928).

O. V. Bovgyra and M. V. Kovalenko, Journal of Nano- and Electronic Physics 8(2), 2031 (2016) (https://doi.org/10.21272/jnep.8(2).02031).

M. V. Kovalenko, O. V. Bovgyra, V. Ye. Dzikovskyi, R. V. Bovhyra, Nanosistemi, Nanomateriali, Nanotehnologii 18(3), 727–741 (2020).

L. I. Nykyruy, R. S. Yavorskyi, Z. R. Zapukhlyak, G. Wisz, P. Potera, Optical Materials 92, 319 (2019) (https://doi.org/10.1016/j.optmat.2019.04.029).

R. Yu. Petrus, H. A. Ilchuk, A. I. Kashuba, I. V. Semkiv, E. O. Zmiiovska, F. M. Honchar, Journal of Applied Spectroscopy 87(1), 35–40 (2020) (https://doi.org/10.1007/s10812-020-00959-7).

R. Petrus, H. Ilchuk, A. Kashuba, I. Semkiv, E. Zmiiovska, Funct. Mater. 27 (2), 342-347 (2020) (https://doi.org/10.15407/fm27.02.342).

R. Yavorskyi, L. Nykyruy, G. Wisz, P. Potera, S. Adamiak and Sz.Górny, Applied Nanoscience (Switzerland) 9, 715-724 (2018) (https://doi.org/10.1007/s13204-018-0872-z).

H. Ilchuk, R. Petrus, A. Kashuba, I. Semkiv and E. Zmiiovska, Molecular Crystals and Liquid Crystals 699(1), 1-8 (2020) (https://doi.org/10.1080/15421406.2020.1732532).

A. Kashuba, H. Ilchuk, R. Petrus, I. Semkiv, O. Bovgyra, M. Kovalenko and V. Dzikovskyi, Modern Physics Letters B, 33, 2150189 (2021) (https://doi.org/10.1142/S021798492150189X).

R. Ebrahimifard, M. R. Golobostanfard, H. Abdizadeh, Applied Surface Science 290, 252–259 (2014) (https://doi.org/10.1016/j.apsusc.2013.11.062).

S. Saha, T. P. Sinha, A. Mookerjee, Physical Review B :Condensed Matter 62, 8828 (2000) (https://doi.org/10.1103/PhysRevB.62.8828).

Downloads

Published

2021-03-18

How to Cite

Kovalenko, M., Bovgyra, O., Dzikovskyi, V., Kashuba, A., Ilchuk, H., Petrus, R., & Semkiv, I. (2021). Effect of Al doping on optical properties of ZnO thin films: theory and experiment. Physics and Chemistry of Solid State, 22(1), 153–159. https://doi.org/10.15330/pcss.22.1.153-159

Issue

Section

Scientific articles