Synthesis, structure and morphology of magnesium ferrite nanoparticles, synthesized via “green” method

Authors

  • T. Tatarchuk Vasyl Stefanyk Precarpathian National University
  • M. Myslin Vasyl Stefanyk Precarpathian National University
  • I. Lapchuk Vasyl Stefanyk Precarpathian National University
  • O. Olkhovyy Jagiellonian University
  • N. Danyliuk Vasyl Stefanyk Precarpathian National University
  • V. Mandzyuk Vasyl Stefanyk Precarpathian National University

DOI:

https://doi.org/10.15330/pcss.22.2.195-203

Keywords:

Spinel, Magnesium ferrite, Nanoparticles, „Green” synthesis, Magnetic hyperthermia

Abstract

In this paper, the synthesis of spinel magnesium ferrite (MgFe2O4) nanoparticles is reported, along with its structural, magnetic and hyperthermic properties, which ensure them being effectively used in various fields. Firstly, magnesium ferrite was synthesized via sol-gel auto-combustion method, using honey as the reducing agent. The crystallite size was calculated via the Scherrer method, the modified Scherrer method, the Williamson-Hall method, and the size-strain plot (SSP) method. X-ray analysis was used to confirm the structure of the spinel. For morphological study of ferrite nanoparticles, scanning electron microscopy (SEM) was used. Finally, hyperthermic properties of magnesium ferrite were analyzed for potential usage in medicine. According to these results, spinel magnesium ferrite (MgFe2O4) nanoparticles proved to be suitable for destruction of cancer cells, as they can be heated to the desired temperature, which will increase the sensitivity of those cells.

References

S. Gul, M.A. Yousuf, A. Anwar, M.F. Warsi, P.O. Agboola, I. Shakir, M. Shahid, Ceram. Int. 46, 14195 (2020) https://doi.org/10.1016/j.ceramint.2020.02.228.

K.K. Kefeni, T.A.M. Msagati, B.B. Mamba, Mater. Sci. Eng. B. 215, 37 (2017) https://doi.org/10.1016/j.mseb.2016.11.002.

D.H.K. Reddy, Y.-S. Yun, Coord. Chem. Rev. 315, 90 (2016) https://doi.org/10.1016/j.ccr.2016.01.012.

N. Deng, L. Zhou, X. Peng, X. Wang, H. Ge, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 44, 2126 (2015) https://doi.org/10.1016/s1875-5372(16)30010-8.

M. Amiri, M. Salavati-Niasari, A. Akbari, Adv. Colloid Interface Sci. 265, 29 (2019) https://doi.org/10.1016/J.CIS.2019.01.003.

K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Sep. Purif. Technol. 188, 399 (2017) https://doi.org/10.1016/J.SEPPUR.2017.07.015.

S. Bindra Narang, K. Pubby, J. Magn. Magn. Mater. 167163 (2020) https://doi.org/10.1016/j.jmmm.2020.167163.

K. Shetty, H.P. Nagaswarupa, D. Rangappa, K.S. Anantharaju, B.S. Surendra, A. Kumar, Mater. Today Proc. 5, 22362 (2018) https://doi.org/10.1016/j.matpr.2018.06.603.

N. Sivakumar, S.R.P. Gnanakan, K. Karthikeyan, S. Amaresh, W.S. Yoon, G.J. Park, Y.S. Lee, J. Alloys Compd. 509, 7038 (2011) https://doi.org/10.1016/j.jallcom.2011.03.123.

K.W. Jung, S. Lee, Y.J. Lee, Bioresour. Technol. 245, 751 (2017) https://doi.org/10.1016/j.biortech.2017.09.035.

R.P. Singh, C. Venkataraju, Chinese J. Phys. 56, 2218 (2018) https://doi.org/10.1016/j.cjph.2018.07.005.

A. Meidanchi, A. Motamed, Preparation, characterization and in vitro evaluation of magnesium ferrite superparamagnetic nanoparticles as a novel radiosensitizer of breast cancer cells, Ceram. Int. 46 (2020) 17577–17583 https://doi.org/10.1016/j.ceramint.2020.04.057.

T. Tatarchuk, M. Bououdina, J.J. Vijaya, L.J. Kennedy, Nanomater. Interface Stud. Appl. Proc. Phys. 195, 305 (2017) https://doi.org/10.1007/978-3-319-56422-7.

K.S. Lee, H.J. Bang, S.T. Myung, J. Prakash, K. Amine, Y.K. Sun, J. Power Sources. 174, 726 (2007) https://doi.org/10.1016/j.jpowsour.2007.06.110.

X. Zhang, Z. Chen, C. Wu, J. Zhang, F. Wang, Chem. Phys. Lett. 732, 136647 (2019) https://doi.org/10.1016/j.cplett.2019.136647.

A.A. Rodríguez-Rodríguez, M.B. Moreno-Trejo, M.J. Meléndez-Zaragoza, V. Collins-Martínez, A. López-Ortiz, E. Martínez-Guerra, M. Sánchez-Domínguez, SInt. J. Hydrogen Energy. 12421 (2019) https://doi.org/10.1016/j.ijhydene.2018.09.183.

T. Karpova, V. Vassiliev, E. Vladimirova, V. Osotov, M. Ronkin, A. Nosov, Ceram. Int. 38, 373 (2012) https://doi.org/10.1016/j.ceramint.2011.07.016.

T. Tatarchuk, M. Myslin, I. Mironyuk, M. Bououdina, A.T. Pędziwiatr, R. Gargula, B.F. Bogacz, P. Kurzydło, J. Alloys Compd. 819, 152945 (2020) https://doi.org/10.1016/J.JALLCOM.2019.152945.

E. Mazario, M.P. Morales, R. Galindo, P. Herrasti, N. Menendez, J. Alloys Compd. 536, S222 (2012) https://doi.org/10.1016/j.jallcom.2011.10.073.

R. Singh Yadav, I. Kuřitka, J. Vilcakova, T. Jamatia, M. Machovsky, D. Skoda, P. Urbánek, M. Masař, M. Urbánek, L. Kalina, J. Havlica, Ultrason. Sonochem. 61, 104839 (2020) https://doi.org/10.1016/j.ultsonch.2019.104839.

P. Mondal, A. Anweshan, M.K. Purkait, Chemosphere 259, 127509 (2020) https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.127509.

B.A. de Marco, B.S. Rechelo, E.G. Tótoli, A.C. Kogawa, H.R.N. Salgado, Saudi Pharm. J. 27, 1 (2019) https://doi.org/10.1016/j.jsps.2018.07.011.

P. Gómez-López, A. Puente-Santiago, A. Castro-Beltrán, L.A. Santos do Nascimento, A.M. Balu, R. Luque, C.G. Alvarado-Beltrán, Curr. Opin. Green Sustain. Chem. 24, 48 (2020) https://doi.org/10.1016/j.cogsc.2020.03.001.

U.P. Manik, A. Nande, S. Raut, S.J. Dhoble, Results Mater. 6, 100086 (2020) https://doi.org/10.1016/j.rinma.2020.100086.

T.B. Vidovix, H.B. Quesada, E.F.D. Januário, R. Bergamasco, A.M.S. Vieira, Mater. Lett. 257, 126685 (2019) https://doi.org/10.1016/j.matlet.2019.126685.

G. Maheshwaran, A. Nivedhitha Bharathi, M. Malai Selvi, M. Krishna Kumar, R. Mohan Kumar, S. Sudhahar, J. Environ. Chem. Eng. 8, 104137 (2020) https://doi.org/10.1016/j.jece.2020.104137.

N. Thangamani, N. Bhuvaneshwari, Chem. Phys. Lett. 732, 136587 (2019) https://doi.org/10.1016/j.cplett.2019.07.015.

J.A.A. Abdullah, L. Salah Eddine, B. Abderrhmane, M. Alonso-González, A. Guerrero, A. Romero, Sustain. Chem. Pharm. 17, (2020) https://doi.org/10.1016/j.scp.2020.100280.

M. Ramzan, R.M. Obodo, S. Mukhtar, S.Z. Ilyas, F. Aziz, N. Thovhogi, Mater. Today Proc. (2020) https://doi.org/10.1016/j.matpr.2020.05.472.

G. Theophil Anand, D. Renuka, R. Ramesh, L. Anandaraj, S. John Sundaram, G. Ramalingam, C.M. Magdalane, A.K.H. Bashir, M. Maaza, K. Kaviyarasu, Surfaces and Interfaces. 17, 100376 (2019) https://doi.org/10.1016/j.surfin.2019.100376.

R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař, M. Holek, J. Phys. Chem. Solids. 110, 87 (2017) https://doi.org/https://doi.org/10.1016/j.jpcs.2017.05.029.

P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Curr. Appl. Phys. 11, 101 (2011) https://doi.org/10.1016/j.cap.2010.06.027.

A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251 (2011) https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2010.11.024.

R. Kumar, M. Kar, J. Magn. Magn. Mater. 416, 335 (2016) https://doi.org/10.1016/j.jmmm.2016.05.035.

M.I. Arshad, S. Arshad, K. Mahmood, A. Ali, N. Amin, Umaid-ur-Rehman, M. Isa, A. Akram, N. Sabir, M. Ajaz-un-Nabi, Phys. B Condens. Matter. 599, 412496 (2020) https://doi.org/10.1016/j.physb.2020.412496.

T.R. Tatarchuk, M. Bououdina, N.D. Paliychuk, I.P. Yaremiy, V.V Moklyak, J. Alloys Compd. 694, 777 (2017) https://doi.org/10.1016/j.jallcom.2016.10.067.

P. Aji Udhaya, T.C. Bessy, M. Meena, Mater. Today Proc. 8, 169 (2019) https://doi.org/10.1016/j.matpr.2019.02.096.

Downloads

Published

2021-04-15

How to Cite

Tatarchuk, T., Myslin, M., Lapchuk, I., Olkhovyy, O., Danyliuk, N., & Mandzyuk, V. (2021). Synthesis, structure and morphology of magnesium ferrite nanoparticles, synthesized via “green” method. Physics and Chemistry of Solid State, 22(2), 195–203. https://doi.org/10.15330/pcss.22.2.195-203

Issue

Section

Scientific articles (Chemistry)