Interaction of N-acetylneyraminic acid with surface of silica with fructose in aqueous solution

Authors

  • L.M. Ushakova Chuiko Institute of Surface Chemistry NAS of Ukraine
  • E.M. Demianenko Chuiko Institute of Surface Chemistry, NAS of Ukraine
  • M.I. Terets Chuiko Institute of Surface Chemistry NAS of Ukraine
  • V.V. Lobanov Chuiko Institute of Surface Chemistry NAS of Ukraine
  • N.T. Kartel Chuiko Institute of Surface Chemistry NAS of Ukraine

DOI:

https://doi.org/10.15330/pcss.22.1.94-100

Keywords:

N-acetylneuraminic acid, fructose, silica surface, water cluster, adsorption, supermolecular approximation, density functional theory method

Abstract

Quantum chemical simulation of the adsorption of N acetylneuraminic acid (NANA) on the surface of silica with the participation of the fructose molecule by the method of density functional theory B3LYP, 6-31G (d, p) was done. The influence of the solvent was taken into account in the supermolecular and continuum approximations, and a cluster approach was used for the adsorption complexes. NANA adsorption of the hydrated silica surface was considered as a process of replacement of water molecules on the silica surface by adsorbate molecules. Two schemes of influence of fructose molecule on NANA adsorption are considered. According to the first scheme, the hydrated NANA molecule interacts with the hydrated silicon-fructose adsorption complex. According to the second scheme, the cluster of hydrated silica interacts with the hydrated NANA-fructose complex. The energy of intermolecular interaction according to the scheme 1 is -9.2 kJ / mol, which is significantly lower compared to the same value with the participation of glucose or sucrose (-20.5 and -86.2 kJ / mol). Scheme 2 proved to be a thermodynamically unfavorable process, as its energy effect is +6.9 kJ / mol, in contrast to similar processes for glucose (-21.8) and sucrose (-87.7 kJ / mol). This confirms the experimental fact of the interaction of substances in a mixture of NANA with carbohydrates in relation to the interaction with silica in comparison with the interaction of substances with silica separately.

References

O.O. Chuiko, Silica surface chemistry (IPF UkrINTEI, Kyiv, 2001), Part 1.

L.J. White, G.J. Duffy, Ind. Eng. Chem. 51(3), 232 (1959) (https://doi.org/10.1021/ie51394a019).

V.E. Nedava, O.I. Smirnova, M.P. Zhuravelʹ, N.P. Galagan, V.I. Bogomaz, A.A. Chuiko, A.P. Sinelnik, V.P. Mikhniuk, Agricultural Вiology: Animal Biology (4), 20 (1992).

L. Bondioli, B. Ruozi, D. Belletti, F. Forni, M.A. Vandelli, G. Tosi, Expert opinion on drug delivery 8(7), 921 (2011) (https://doi.org/10.1517/17425247.2011.577061).

L.V. Nosach, Surface 6(21), 83 (2014) (https://surfacezbir.com.ua/index.php/surface/article/view/541).

T.L. Polesia, Ph.D. dissertation, Scientific Research Institute of Pharmacology of the Russian Academy of Medical Sciences (1992).

T.V. Kulyk, Ph.D. dissertation, Institute of Surface Chemistry of National Academy of Sciences of Ukraine (2000).

T.V. Kulyk, B.B Palianytsia, N.P. Galagan, Nanosistemi, Nanomateriali, Nanotehnologii 1(2), 681 (2003).

N.P. Galagan, A.P. Sinelnik, V.I. Bogomaz et al., IV All-Union Conf. "Biological activity of silicon, germanium and tin compounds" (Irkutsk, 1990), p. 67.

G.D. Parfitt and C.H. Rochester, editors, Adsorption from solution at the solid/liquid interface (Academic Press, London, New York, 1983).

M.B. Smith March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 8th ed. (Wiley, 2019).

L.M. Ushakova, E.M. Demianenko, M.I. Terets, V.V. Lobanov, N.T. Kartel, Physics and Technology of Surface 11(3), 420 (2020) (https://doi.org/10.15407/hftp11.03.420).

A.D. Becke, J. Chem. Phys. 98(7), 5648 (1993) (https://doi.org/10.1063/1.464913).

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37(2), 785 (1988) (https://doi.org/10.1103/PhysRevB.37.785).

S. Grimme, WIREs Comput. Mol. Sci. 1(2), 211 (2011) (https://doi.org/10.1002/wcms.30).

S. Grimme, S. Ehrlich, L. Goerigk, Journal of Computational Chemistry 32(7), 1456 (2011) (https://doi.org/10.1002/jcc.21759).

M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 255(4-6), 327 (1996) (https://doi.org/10.1016/0009-2614(96)00349-1).

J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105(8), 2999 (2005) (https://doi.org/10.1021/cr9904009).

M.W. Schmidt, K.K. Baldridge, J A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery Jr, Journal of Computational Chemistry 14(11), 1347 (1993) (https://doi.org/10.1002/jcc.540141112).

F. Jensen, Introduction to Computational Chemistry, 3th ed. (John Wiley & Sons, Odense, 2017).

L.M. Ushakova, E.M. Demianenko, M.I. Terets, V.V. Lobanov, N.T. Kartel, Chemistry, Physics and Technology of Surface 11(4), 516 (2020) (https://doi.org/10.15407/hftp11.04.516).

L.M. Ushakova, E.M. Demianenko, M.I. Terets, V.V. Lobanov, N.T. Kartel, Surface 12(27), 36 (2020) (https://doi.org/10.15407/Surface.2020.12.036).

Published

2021-02-23

How to Cite

Ushakova, L., Demianenko, E., Terets, M., Lobanov, V., & Kartel, N. (2021). Interaction of N-acetylneyraminic acid with surface of silica with fructose in aqueous solution. Physics and Chemistry of Solid State, 22(1), 94–100. https://doi.org/10.15330/pcss.22.1.94-100

Issue

Section

Scientific articles

Most read articles by the same author(s)