The Mechanisms of Nickel-Iron Spinel Phase Nucleation in Aquous Solutions: Crystal Quasichemical Approach
DOI:
https://doi.org/10.15330/pcss.20.2.156-164Keywords:
defect nickel-iron spinel, hydroxocomplex, lattice parameter, optical spectroscopyAbstract
The phenomenological model of nikel-iron spinel nucleation with spinel structure based on the partial charge theory and analysis of hydrolysis and polycondensation processes at the interaction of Fe3+-, Fe2+- and Ni2+- hydroxocomplexes at different pH values of reaction medium was proposed. UV-vis optical spectroscopy was used for verification of the obtained results about the regularities of hydroxocomplexes formation. Crystal quasichemistry approach was applied for nucleation of nikel-iron spinel under the conditions of predomination of different defect types in NixFe3-xO4-δ (δ is oxygen non-stoichiometry) spinel lattice. The analysis of changes in electrical conductivity and lattice parameter of defect nickel-iron spinel as a function of Ni2+ atomic concentration was done for different values of d parameter.
References
M.A. Li, L. Zhang, X. B. Li, Z. Y. Li, K. C. Zhou, Trans. Nonferrous Met. Soc. China 25(1), 146 (2015).
S. Zhang, J. Shan, L. Nie, L. Nguyen, Z. Wu, F.F. Tao, Surf. Sci. 648, 156 (2016).
Y. Liu, Y. Song, Y. You, X. Fu, J. Wen, X. Zheng, J. Saudi Chem. Soc. 22(4), 439 (2018).
V. Nagarajan, R. Chandiramouli, arXiv preprint arXiv 1706, 10148 (2017).
V. Manikandan, X. Li, R. S. Mane, J. Chandrasekaran, J. Electron. Mater. 47, 3403 (2018).
J. Kudr, Y. Haddad, L. Richtera, Z. Heger, M. Cernak, V. Adam, O. Zitka, Nanomater. 7(9), 243 (2017).
C. Sun, J.S. Lee, M. Zhang, Adv. Drug Delivery Rev. 60(11), 1252 (2008).
L. Chauhan, A. K. Shukla, K. Sreenivas, Ceram. Int. 42(10), 12136 (2016).
J. Tan, W. Zhang, A.L. Xia, Mater. Res. 16(1), 237 (2013).
Z.K. Karakaş, R. Boncukçuoğlu, İ.H. Karakaş, J. Phys.: Conf. Ser. 707, 012046 (2016).
M. Henry, J.P. Jolivet, J. Livage, Struct. Bonding 77, 153 (1992).
W. Schneider, Comments Inorg. Chem. 3(4), 205 (1984).
T.K. Sham, J.B. Hastings, M.L. Perlman, J. Am. Chem. Soc. 102(18), 5904 (1980).
V.O. Kotsyubynsky, I.F. Myronyuk, L.I. Myronyuk, V.L. Chelyadyn, M.H. Mizilevska, A.B. Hrubiak, F.M. Nizamutdinov, Materialwiss. Werkstofftech. 47(2-3), 288 (2016).
R.L. Martin, P.J. Hay, L.R. Pratt, J. Phys. Chem. A 102(20), 3565 (1998).
C.F. Baes Jr, R.E. Mesmer The hydrolysis of cations (John Wiley and Sons: Hoboken: 1976).
Li Hua, Wu Hua-zhong, Xiao Guo-xian, 198, 157 (2010).
S.S. Lisnyak, Inorganic materials 28(9), 1913 (1992).
D.M. Freik, V.M. Bojchuk, L.I. Mezhilovskaja, Neorganicheskie materialy 40(10), 1171 (2004).
S. Bastien, N. Braidy, J. Phys. Chem. C 122(20), 11038 (2018).
L. Liu, Y. Cheng, Z. Liu, M.N. Ha, Q. Guo, Z. Zhao, RSC Adv. 6(87), 83814 (2016).
S.S. Lisnyak, A.V. Bitneva, V.O. Kotsyubinsky, I.P. Yaremy, G.V. Muhin, Physics and Chemistry of Solid State 1(3), 507 (2000).
N. Ponpandian, P. Balaya, A. Narayanasamy, J. Phys.: Condens. Matter 14(12), 3221 (2002).
K.J. Kim, T.Y. Koh, J. Park, J.Y. Park, J. Magn., 22(3), 360 (2017).
S.T. Hugh, C. ONeill, A. Navrotsky, Am. Mineral. 68, 181 (1983).
V.M. Talanov, Phys. Status Solidi B 106(1), 99 (1981).
T. Kodama, Y. Kitayama, M. Tsuji, Y. Tamaura, J. Magn. Soc. Jpn. 20(2), 305 (1996).