Electrophysical and Morphological Properties of a Hydrothermally Synthesized CuFe2O4 and CuFe2O4 / Reduced Graphene Oxide Composite

Authors

  • V.O. Kotsyubynsky Vasyl Stefanyk Precarpathian National University
  • V.M. Boychuk Vasyl Stefanyk Precarpathian National University
  • R.I. Zapukhlyak Vasyl Stefanyk Precarpathian National University
  • M.A. Hodlevskyi Vasyl Stefanyk Precarpathian National University
  • I.M. Budzulyak Vasyl Stefanyk Precarpathian National University
  • A.I. Kachmar Poznan University of Technology
  • M.A. Hodlevska Vasyl Stefanyk Precarpathian National University
  • L.V. Turovska Ivano-Frankivsk National Medical University

DOI:

https://doi.org/10.15330/pcss.22.2.372-379

Keywords:

copper ferrite, reduced graphene oxide, Mossbauer spectroscopy, pore size distribution, electrical conductivity

Abstract

The aim of this paper is to compare the structural, morphological and electrical properties of the CuFe2O4 and CuFe2O4 / reduced graphene oxide composite. XRD and Mossbauer studies have shown that joint hydrothermal synthesis of cubic copper ferrite and reduction of graphene oxide leads to a decrease in ferrite particles from 14 to 8 nm. Based on the impedance spectroscopy data, a model of the obtained composite material has been prepared as a system consisting of contacting spinel particles covered with rGO clusters and separated by porous rGO. For CuFe2O4 / rGO composite material, the predominance of hopping charge transfer mechanisms has been shown, and the activation energies of electrical conductivity of grains and grain boundaries have been calculated.

References

Malaie, M. R. Ganjali, Journal of Energy Storage 102097 (2020); https://doi.org/10.1016/j.est.2020.102097.

J.S. Sagu, K.G.U. Wijayantha, A.A. Tahir, Electrochimica Acta 246, 870 (2017); https://doi.org/10.1016/j.electacta.2017.06.110.

S.L. Kuo, J. F. Lee, N.L. Wu, Journal of the Electrochemical Society 154(1), A34 (2006).

P. Bhojane, A. Sharma, M. Pusty, Y. Kumar, S. Sen, P. Shirage, Journal of nanoscience and nanotechnology 17(2), 1387 (2017); https://doi.org/10.1166/jnn.2017.12666.

V. Boychuk, V. Kotsyubynsky, B. Rachiy, Kh. Bandura, A. Hrubiak, S. Fedorchenko, Materials Today: Pro¬ceedings 6(2), 106 (2019); https://doi.org/10.1016/j.matpr. 2018.10.082.

V. Kotsyubynsky, R. Zapukhlyak, V. Boy¬chuk, M. Hodlevska, B. Rachiy, I. Yaremiy, A. Kachmar, M. Hodlevsky, Applied Nanoscience 1-8 (2021); https://doi.org/10.1007/s13204-021-01773-z.

V.O. Kotsyubynsky, V.M. Boychuk, B.I. Mudzuliak, B.I. Rachiy, R.I. Zapukhlyak, M.A. Hodlevska, et all., Physics and Chemistry of Solid State, 22(1), 31 (2021); https://doi.org/10.15330/pcss.22.1.31-38.

S. Pei, H. M. Cheng, Carbon 50(9), 3210 (2012); https://doi.org/10.1016/j.carbon.2011.11.010.

V. Kotsyu¬bynsky, B. Ostafiychuk, V. Moklyak, A. Hrubiak, Solid State Phenomena 230, 120 (2015); https://doi.org/10.4028/www.scientific.net/SSP.230.120.

O. Petracic, Superlattices and Microstru¬ctures 47(5), 569 (2010); https://doi.org/10.1016/j.spmi.2010.01.009.

G.F Goya, H.R. Rechenberg, Nanostructured Materials 10(6), 1001 (1998); https://doi.org/10.1016/S0965-9773(98)00133-0.

J.J. Z.iang, G.F. Goya, H.R. Rechenberg, Journal of Physics: Condensed Matter 11(20), 4063 (1999).

R.K., Selvan, C.O., Augustin, V. Šepelák, L.J. Berchmans, C.bSanjeeviraja, & A. Gedanken, Materials Chemistry and Physics 112(2), 373 (2008).

S.Da Dalt, A.S. Takimi, T.M. Volkmer, V.C. Sousa, C.P. Bergma, Powder Technology 210(2), 103 (2011); https://doi.org/10.1016/j.powtec.2011.03.001.

I. Nedkov, R.E. Vanderberghe, G. Vissokov, T. Merodiiska, S. Kolev, K. Krezhov, Physica Status Solidi 201(5), 1001 (2004); https://doi.org/10.1002/pssa.200306788.

M. El-Shahat, M. Mochtar, M.M. Rashad, & M.A. Mousa, Journal of Solid State Electrochemistry 25(3), 803 (2021); https://doi.org/10.1007/s10008-020-04837-2.

S.V. Moghaddam, M. Rezaei, F. Meshkani, R. Daroughegi, International journal of hydrogen energy 43(41), 19038 (2018); https://doi.org/10.1016/j.ijhydene.2018.08.163.

B.K. Ostafiychuk, L.S. Kaykan, J.S. Mazurenko, B.Y. Deputat, S.V. Koren, Journal of Nano-and Electronic Physics 9(5), (2017); https://doi.org/10.21272/jnep.9(5).05018.

N. Ponpandian, P. Balaya, A. Narayanasamy, Journal of Physics: Condensed Matter 14(12), 3221 (2002); https://doi.org/10.1088/0953-8984/14/12/311.

Downloads

Published

2021-06-16

How to Cite

Kotsyubynsky, V., Boychuk, V., Zapukhlyak, R., Hodlevskyi, M., Budzulyak, I., Kachmar, A., … Turovska, L. (2021). Electrophysical and Morphological Properties of a Hydrothermally Synthesized CuFe2O4 and CuFe2O4 / Reduced Graphene Oxide Composite. Physics and Chemistry of Solid State, 22(2), 372–379. https://doi.org/10.15330/pcss.22.2.372-379

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)

1 2 3 4 5 > >>