Influence of gadolinium doping on structural properties of carbon nanotubes

Authors

  • R.G. Abaszade Azerbaijan State Oil and Industry University, Baku, Azerbaijan
  • M.B. Babanli Azerbaijan State Oil and Industry University, Baku, Azerbaijan
  • V.O. Kotsyubynsky Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • A.G. Mammadov Azerbaijan State Oil and Industry University, Baku, Azerbaijan
  • E. Gür Eskisehir Osmangazi University, Eskisehir, Turkey
  • О.А. Kapush V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine, Kyiv, Ukraine
  • M.O. Stetsenko Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, PR China; V.E. Lashkaryov Institute of Semiconductor Physics, NASU, Kyiv, Ukraine
  • R.I. Zapukhlyak Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.1.153-158

Keywords:

carbon nanotube, gadolinium, SEM, EDX, Raman analysis, FTIR

Abstract

The paper presents an analysis of SEM, EDX, Raman scattering, and FTIR of Gadolinium-doped multi-walled carbon nanotubes obtained by hydrothermal method. The morphological characteristics of the materials were studied and their compositions were analyzed. Hydrothermal doping of MWCNs with Gd causes the formation of 3D network architecture and sharply increases the content of oxygen surface functionality. An unidentified intense broad peak for Gd-doped material at 2940 cm-1 was observed. The defect state of Gd-doped MWCNTs was studied by Raman spectroscopy.

References

Y. Cao, L. Xu, Y. Kuang, D. Xiong, R. Pei, Gadolinium-based nanoscale MRI contrast agents for tumor imaging, Journal of Materials Chemistry B, 5(19), 3431 (2017); https://doi.org/10.1039/C7TB00382J.

S. K. Debnath, R. Srivastava, Drug delivery with carbon-based nanomaterials as versatile nanocarriers: progress and prospects, Frontiers in Nanotechnology, 3, 644564 (2021); https://doi.org/10.3389/fnano.2021.644564.

Y. Hwang, S. H. Park, J. W. Lee, Applications of func¬tionalized carbon nanotubes for the therapy and diag¬nosis of cancer, Polymers, 9(1), 13 (2017); https://doi.org/10.3390/polym9010013.

B. Liu, X. Liu, Z. Yuan, Y. Jiang, Y. Su, J. Ma, H. Tai, A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature, Sensors and Actuators B: Chemical, 295, 86 (2019); https://doi.org/10.1016/j.snb.2019.05.065.

M. Pirzada, Z Altintas, Nanomaterials for healthcare biosensing applications, Sensors, 19(23), 5311 (2019); https://doi.org/10.3390/s19235311.

F. Du, L. Zhang, L. Zhang, M. Zhang, A. Gong, Y. Tan, S. Zou, Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors, Biomaterials, 121, 109 (2017); https://doi.org/10.1016/j.biomaterials.2016.07.008

R. G. Abas¬zade, O. A. Kapush, S. A. Mamedova, A. M. Nabiyev, S. Z. Melikova, S. I. Budzulyak, Gadolinium doping influence on the properties of carbon nanotubes, Physics and Chemistry of Solid State, 21(3), 404 (2020); https://doi.org/10.15330/pcss.21.3.404-408.

R. G.Abaszade, A. G. Mamedov, I. Y.Bay¬ramov, E. A Khanmamadova, V. O. Kotsyu¬bynsky, O. A Kapush, V. M. Boychuk, E. Y. Gur, Structural and electrical properties of sulfur-doped graphene oxide/graphite oxide composite, Physics and Chemistry of Solid State, 23(2), 256 (2022); https://doi.org/10.15330/pcss.23.2.256-260.

T. Hajilounezhad, R. Bao, K. Palaniappan, F. Bunyak, P. Calyam, M. R. Maschmann. Predicting carbon nanotube forest attributes and mechanical properties using simulated images and deep learning, npj Computational Materials, 7(1), 134 (2021); https://doi.org/10.1038/s41524-021-00603-8.

M. Stetsenko, T. Margitych, S. Kryvyi, L. Maksimenko, Hassan, A.; Filonenko, S., et al. Nanoparticle Self-Aggregation on Surface with 1,6-Hexanedithiol Functionalization, Nanomaterials, 10, 512 (2020); https://doi.org/10.3390/nano10030512.

N. Abdolhi, M. Aghaei, A. Soltani, H. Mighani, E. A.Ghaemi, M. B. Javan, H.Balakheyli. Synthesis and antibacterial activities of novel Hg (II) and Zn (II) complexes of bis (thiosemicarbazone) acenaphthenequinone loaded to MWCNTs, Journal of Structural Chemistry, 60, 845 (2019); https://doi.org/10.1134/S0022476619050196.

E.Abdel-Fattah, A. I Alharthi., T. Fahmy, Spectroscopic, optical and thermal characterization of polyvinyl chloride-based plasma-functionalized MWCNTs composite thin films, Applied Physics A, 125(7), 475 (2019); https://doi.org/10.1007/s00339-019-2770-y.

A.Sadezky, H. Muckenhuber, H.Grothe, R. Niessner, U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon, 43(8), 1731 (2005); https://doi.org/10.1016/j.carbon.2005.02.018.

V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D.Tasis, A.Siokou, C. Galiotis. Chemical oxidation of multiwalled carbon nanotubes, Сarbon, 46(6), 833 (2008); https://doi.org/10.1016/j.carbon.2008.02.012.

K.Angon, Remarks on the structure of carbon materials on the basis of Raman spectra, Carbon, 31(4), 537 (1993); https://doi.org/10.1016/0008-6223(93)90106-K.

K. E.Kim, K. J.Kim, W. S. Jung, S. Y.Bae, J.Park, J.Choi, J.Choo. Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene, Chemical physics letters, 401(4-6), 459 (2005); https://doi.org/10.1016/j.cplett.2004.11.113.

Y. Yerlanuly, R. Y Zhumadilov, I. V. Danko, D. M. Janseitov, R. R. Nemkayeva, A. V. Kireyev, et al. Effect of Electron and Proton Irradiation on Structural and Electronic Properties of Carbon Nanowalls, ACS omega, 7(51), 48467 (2022); https://doi.org/10.1021/acsomega.2c06735.

V. O. Kotsyubynsky, V. M. Boychuk, I. M. Budzulyak, B. I. Rachiy, M. A. Hodlevska, A. I. Kachmar, M. A. Hodlevsky, Graphene oxide synthesis using modified Tour method, Advances in Natural Sciences: Nanoscience and Nanotechnology, 12(3), 035006 (2021); https://doi.org/10.1088/2043-6262/ac204f.

Downloads

Published

2023-03-20

How to Cite

Abaszade, R., Babanli, M., Kotsyubynsky, V., Mammadov, A., Gür, E., Kapush О., … Zapukhlyak, R. (2023). Influence of gadolinium doping on structural properties of carbon nanotubes. Physics and Chemistry of Solid State, 24(1), 153–158. https://doi.org/10.15330/pcss.24.1.153-158

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)

<< < 1 2 3