Phase Formation in the Systems A(+)–Y(3+)–WO_4(2–) –H(+)–H_2O (A(+) = NH_4(+), K(+) and M(2+)–Y(3+)–WO_4(2–) –H(+)–H_2O (M(2+) = Mg(2+), Zn(2+)). Synthesis, FT-IR Spectroscopy, and Crystal Structure Determination of Salts with Paratungstate B Anion, Na2(NH4)8[W12O40(OH)2]∙12H2O and K10[W_12O_40(OH)_2]∙13H_2O

Authors

  • O.Yu. Mariichak Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine
  • O.O. Litsis Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • V.M. Baumer State Scientific Institution "Institute for Single Crystals" of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
  • G.M. Rozantsev Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine
  • S.V. Radio Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine

DOI:

https://doi.org/10.15330/pcss.26.2.285-295

Keywords:

polyoxometalates, heteropoly tungstate, yttrium, Peacock–Weakley type of structure, paratungstate B anion, scanning electron microscopy, single-crystal X-ray diffraction, synthesis

Abstract

A new procedure for the synthesis of sodium heteropoly decatungstoyttriate(III) Na9[Y(W5O18)2]·35H2O (I) from an aqueous solution of sodium tungstate, acidified to Z = ν(H+)/ν(WO42–) = 0.80 with ratio of ν(Y):ν(W) = 1:10 and with 2-propanone adding, has been developed. The presence of the Peacock–Weakley type anion in the obtained salt has been confirmed by FTIR spectroscopy. The micromorphology of the surface was studied using scanning electron microscopy (SEM); it was found that the grain size of (I) is in the range of 200–450 nm. The single-phase nature of the synthesized salt was confirmed by the uniform contrast of the surface in the backscattered electron mode.

The conditions for the synthesis of salts with the paratungstate B anion Na2(NH4)8[W12O40(OH)2]∙12H2O (II), K10[W12O40(OH)2]∙13H2O (III), and M5[W12O40(OH)2]∙nH2O (M2+ = Mg2+ (IV), and Zn2+ (V)) from acidified with Z = 0.80 aqueous solutions of the systems A+–Y3+–WO42––H+–H2O (A = NH4+, K+) and M2+–Y3+–WO42––H+–H2O (M2+ = Mg2+, Zn2+) have been established. Elemental analysis, SEM, and FTIR spectroscopy characterized the obtained salts.

The crystal structure of Na2(NH4)8[W12O40(OH)2]∙12H2O (II) (Mr = 3286.72, orthorhombic, Pbca, a = 14.0631(6) Å, b = 15.6713(5) Å, c = 22.9147(16) Å, V = 5050.1(4) Å3 at T = 200(2) K, Z = 4, dcalcd = 4.323 g/cm3) and К10[W12O40(OH)2]∙13H2O (III) (Mr = 3489.42, monoclinic, P21/c, a = 11.5049(6) Å, b = 14.3008(7) Å, c = 15.4567(10) Å, β = 105.889(7)°, V = 2445.9(2) Å3 at T = 293(2) K, Z = 2, dcalcd = 4.738 g/сm3) was determined by single crystal X-ray analysis.

References

R. D. Peacock, T. J. R. Weakley, Heteropolytungstate complexes of the lanthanide elements. Part I. Preparation and reactions, J. Chem. Soc. A, 1836 (1971); https://doi.org/10.1039/J19710001836.

M. Barsukova, M. H. Dickman, E. Visser, S. S. Mal, U. Kortz, Synthesis and structural characterization of the yttrium containing isopolytungstate [YW10O36]9-, Z. Anorg. Allg. Chem., 634(12-13), 2423 (2008); https://doi.org/10.1002/zaac.200800240.

A. H. Ismail, M. H. Dickman, U. Kortz, 22-Isopolytungstate fragment [H2W22O74]14- coordinated to lanthanide ions, Inorg. Chem., 48(4), 1559 (2009); http://doi.org/10.1021/ic801946m.

F. Hussain, A. Degonda, S. Sandriesser, T. Fox, S. S. Mal, U. Kortz, G. R. Patzke, Yttrium containing head-on complexes of silico- and germanotungstate: Synthesis, structure and solution properties, Inorg. Chim. Acta 363(15), 4324 (2010); http://doi.org/10.1016/j.ica.2010.07.053.

M. Barsukova, N. V. Izarova, R. Ngo Biboum, B. Keita, L. Nadjo, V. Ramachandran, N. S. Dalal, N. S. Antonova, J. J. Carbó, J. M. Poblet, U. Kortz, Polyoxopalladates encapsulating yttrium and lanthanide ions, [X IIIPdII12(AsPh)O2] 5- (X = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), Chem. Eur. J., 16(30), 9076 (2010); http://doi.org/10.1002/chem.201000631.

R. C. Howell, F. G. Perez, W. D. Horrocks, S. Jain, A. L. Rheingold, L. C. Francesconi, A New Type of Heteropolyoxometalates formed from Lacunary Polyoxotungstate Ions and Europium or Yttrium Cations, Angew. Chem., Int. Ed., 40(21), 4031 (2001); https://doi.org/10.1002/1521-3773(20011105)40:21<4031::AID-ANIE4031>3.0.CO;2-8.

X. Fang, T. M. Anderson, C. Benelli, C. L. Hill, Polyoxometalate-supported Y- and YbIII-hydroxo/oxo clusters from carbonate-assisted hydrolysis, Chem. Eur. J., 11(2), 712 (2005); http://doi.org/10.1002/chem.200400774.

G. Xue, B. Liu, H. Hua, J. Yang, J. Wang, F. Fu, Large heteropolymetalate complexes formed from lanthanide (Y, Ce, Pr, Nd, Sm, Eu, Gd), nickel cations and cryptate [As4W40O140]28−: synthesis and structure characterization, J. Mol. Struct., 690(1-3), 95 (2004); https://doi.org/10.1016/j.molstruc.2003.11.017.

M. Ibrahim, S. M. Sankar, B. S. Bassil, A. Banerjee, U. Kortz, Yttrium (III)-containing tungstoantimonate(III) stabilized by tetrahedral WO42- capping unit, [(Y(α-SbW9O31(OH) 2)(CH3COO)(H2O)}3(WO 4)]17-, Inorg. Chem., 50(3), 956(2011); http://doi.org/10.1021/ic102149c.

O. Y. Mariichak, V. V. Ignatyeva, V. N. Baumer, G. M. Rozantsev, S. V. Radio, Heteropoly Decatungstolanthanidates(III) with Peacock–Weakley Type Anion: Synthesis and Crystal Structure of Isostructural Salts Na9[Ln(W5O18)2]·35H2O (Ln = Gd, Er), J. Chem. Crystallogr., 50(3), 255 (2020); http://doi.org/10.1007/s10870-020-00845-2.

O. Y. Mariichak, S. Kaabel, Y. A. Karpichev, G. M. Rozantsev, S. V. Radio, C. Pichon, H. Bolvin, J.-P. Sutter, Crystal structure and magnetic properties of Peacock–Weakley type polyoxometalates Na9[Ln(W5 O18)2] (Ln = Tm, Yb): Rare example of Tm(III) SMM, Magnetochemistry, 6(4), 53 (2020); http://doi.org/10.3390/magnetochemistry6040053.

G. M. Sheldrick, SHELXT - Integrated space-group and crystal-structure determination, Acta Crystallogr., C71(1), 3 (2015); http://doi.org/10.1107/S2053273314026370.

L. J. Farrugia, WinGX suite for small-molecule single-crystal crystallography, J. Appl. Cryst., 32, 837 (1999); https://doi.org/10.1107/S0021889899006020.

T. C. Ozawa, S. J. Kang, Balls & Sticks: Easy-to-use structure visualization and animation program, J. Appl. Cryst, 37(4), 679 (2004); https://doi.org/10.1107/S0021889804015456.

D.-L. Long, R. Tsunashima, L. Cronin, Polyoxometalates: Building blocks for functional nanoscale systems, Angew. Chem. Int. Ed. 49(10), 1736 (2010); https://doi.org/10.1002/anie.200902483.

M. Ibrahim, B. S. Bassil, U. Kortz, Synthesis and characterization of 8-yttrium(III)-containing 81-tungsto-8-arsenate(III), [Y8(CH3COO)(H2O)18(As2W19O68)4(W2O6)2-(WO4)]43-, Inorganics, 3(2), 267 (2015); https://doi.org/10.3390/inorganics3020267.

D. Ortiz-Acosta, R. K. Feller, B. L. Scott, R. E. Del Sesto, Isolation of an asymmetric lanthanide polyoxometalate, Na 12H[(W 5O 18)Tb(H 2W 11O 39)]·42H 2O, containing two distinct isopolyanions, J. Chem. Crystallogr, 42(7), 651 (2012); https://doi.org/ 10.1007/s10870-012-0311-z.

G. M. Rozantsev, S. V. Radio, N. I. Gumerova, V. N. Baumer, O. V. Shishkin, Phase formation in the Ni 2+-WO 4 2- -H +-H 2O system (Z = 1.00). Crystal structure and properties of sodium heteropolyhexatunsten nickelate(2+) Na4[Ni(OH)6W6O18]·16H2O, J. Struct. Chem., 50(2), 296 (2009); https://doi.org/ 10.1007/s10947-009-0041-z.

N. I. Gumerova, K. V. Kasyanova, G. M. Rozantsev, V. N. Baumer, S. V. Radio, Synthesis and Crystal Structure of Potassium–Nickel Heteropoly Hexatungstonickelate (II) K3Ni0,5[Ni(OH)6W6O18]·12H2O with Anderson-Type Anion and Potassium–Nickel Paratungstate B K6Ni2[W12O40(OH)2]·22H2O, J. Clust. Sci., 26(4), 1171 (2015); https://doi.org/ 10.1007/s10876-014-0805-2.

N. I. Gumerova, N. A. Melnik, G. M. Rozantsev, V. N. Baumer, S. V. Radio, Sodium heteropolyhexamolybdenumnickelate (II) Na4[Ni(OH)6Mo6O18]·16H2O with an anderson anion: Synthesis and crystal structure, J. Struct. Chem., 56(5), 926 (2015); https://doi.org/10.1134/S0022476615050157.

N. I. Gumerova, A. V. Notich, G. M. Rozantsev, S. V. Radio, pH-Metric Studies on the Interaction of Ni-Containing Anderson Type Heteropolyanions in Aqueous Solution, J. Solution Chem., 45(6), 849 (2016); https://doi.org/10.1007/s10953-016-0471-0.

L. Yuan, C. Qin, X. Wang, Y. Li, E. Wang, Transition of Classic Decatungstate to Paratungstate: Synthesis, Structure and Luminescence Properties of Two Paratungstate-based 3-D Compounds, Z. Naturforschung, В63(10), 1175 (2008); https://doi.org/ 10.1515/znb-2008-1006.

J. Ying, Y. Chen, X. Wang, Two isopolytungstate compounds based on rare [W6O22]8− and [H2W12O42]10− fragments captured by premade copper(ii) complexes, New J. Chem., 43, 6765(2019); https://doi.org/ https://doi.org/10.1039/C8NJ06367B.

B. L. George, G. Aruldhas, I. L. Botto, Vibrational spectra of sodium paratungstate 26 hydrate, Na10(H2W12O42)·26H2O, J. Mater. Sci. Lett., 11(21), 1421 (1992); https://doi.org/10.1007/BF00729648.

S. V. Radio, G. M. Rozantsev, V. N. Baumer, O. V. Shishkin, Crystal structure of nickel paratungstate B Ni5[W 12O40(OH)2]·37H2O, J. Struct. Chem, 52(1), 111 (2011); https://doi.org/10.1134/S002247661101015X.

H. D'Amour, R. Allmann, Die Kristallstruktur des Dinatrium-oktammonium-parawolframat-dodekahydrats, Na2(NH4)8(H2W12O48)(H2O)12, Z. Kristallogr., 138, 5 (1973); https://doi.org/10.1524/zkri.1973.138.1-4.5.

E. V. Peresypkina, A. V. Virovets, S. A. Adonin, P. A. Abramov, A. V. Rogachev, P. L. Sinkevich, V. S. Korenev, M. N. Sokolov, Crystal structure of two salts derived from paratungstate in the [H2W12O42]10− anion, J. Struct. Chem., 55(2), 295 (2014); https://doi.org/ 10.1134/S0022476614020152.

H. T. Evans Jr., U. Kortz, G. B. Jameson, Structure of Potassium Paradodecatungstate 7 ½ -Hydrate, Acta Crystallogr., C49, 856 (1993); https://doi.org/10.1107/S0108270192012010.

A. Chrissafidou, J. Fuchs, H. Hartl, R. Palm, Kristallisation und Strukturuntersuchung von Alkali-Parawolframaten, Z. Naturforschung B50, 217 (1995); https://doi.org/10.1515/znb-1995-0211.

Downloads

Published

2025-06-22

How to Cite

Mariichak, O., Litsis, O., Baumer, V., Rozantsev, G., & Radio, S. (2025). Phase Formation in the Systems A(+)–Y(3+)–WO_4(2–) –H(+)–H_2O (A(+) = NH_4(+), K(+) and M(2+)–Y(3+)–WO_4(2–) –H(+)–H_2O (M(2+) = Mg(2+), Zn(2+)). Synthesis, FT-IR Spectroscopy, and Crystal Structure Determination of Salts with Paratungstate B Anion, Na2(NH4)8[W12O40(OH)2]∙12H2O and K10[W_12O_40(OH)_2]∙13H_2O. Physics and Chemistry of Solid State, 26(2), 285–295. https://doi.org/10.15330/pcss.26.2.285-295

Issue

Section

Scientific articles (Chemistry)