Magnesium-Doped Cobalt-Zinc Ferrite: A Study on Enhanced Magnetic and Electrical Properties

Authors

  • Y.Kolekar Ravikumar Physics Department, M.M.Arts & Science College, Sirsi (Uttara Kannada), Karnataka, India
  • S.B. Kapatkar Department Physics , K.L.E. Technological University, Vidyanagar, Hubballi, India
  • S.N. Mathad Department Physics , K.L.E. Technological University, Vidyanagar, Hubballi, India
  • Sh. Hegde Department of Studies In Physics, Mangalore University, Mangalore, India

DOI:

https://doi.org/10.15330/pcss.26.4.895-904

Keywords:

Magnesium-doped Cobalt Zinc ferrite (Mg-Co-Zn ferrite), Solid-state reaction, Thermogravimetry, Fourier Transform Infrared Spectra, Vibrating Sample Magnetometer, Two probe

Abstract

This research investigates the synthesis, characterization, and properties of magnesium-doped cobalt zinc ferrite (Mg-Co-Zn ferrite) composites prepared by solid state reaction. Thermal analysis through TGA/DTA revealed phase formation and thermal stability, with weight losses corresponding to water and chloride evaporation, and the formation of metal oxides confirmed at 850°C. FTIR spectra identified the spinel structure, highlighting the effects of Mg2+ ion doping on lattice vibrations and cationic redistribution. Magnetic properties were evaluated using hysteresis loops measured at room temperature, showing that Mg doping enhanced saturation magnetization (Ms) and coercivity (Hc), with superparamagnetic behavior observed at the nanoscale. Electrical properties, determined by the two-probe method, demonstrated increased DC resistivity with higher Mg content, attributed to the Verwey-deBoer hopping mechanism.The dielectric constant of Mg-doped Co-Zn ferrite systems varies with Mg content, frequency, and hopping conduction, with the highest value at x=0.08, attributed to Fe3+ ion migration. The study concludes that Mg-Co-Zn ferrite composites exhibit tunable magnetic and electrical properties, making them suitable for high-frequency applications, such as microwave absorption, magnetic recording, and advanced technological uses in biomedical fields, sensors, and memory devices.

Author Biography

S.B. Kapatkar , Department Physics , K.L.E. Technological University, Vidyanagar, Hubballi, India

 

 

References

H. S.Mund, , and B. L. Ahuja, Structural and magnetic properties of Mg doped cobalt ferrite nano particles prepared by sol-gel method, Materials Research Bulletin, 85, 228 (2017); https://doi.org/10.1016/J.MATERRESBULL.2016.09.027.

S.K. Sushant, N.J. Choudhari, S. Patil, et al. Development of M–NiFe2O4 (Co, Mg, Cu, Zn, and Rare Earth Materials) and the Recent Major Applications. Int. J Self-Propag. High-Temp. Synth. 32, 61 (2023); https://doi.org/10.3103/S1061386223020061.

M. Abdullah Dar, et al. Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Applied Surface Science, 258.14, 5342(2012); https://doi.org/10.1016/j.apsusc.2012.01.158.

Y.Qu, H.Yang, N.Yang, Y.Fan, H. Zhu, and G.T.Zou, The effect of reaction temperature on the particle size, structure, and magnetic properties of coprecipitated CoFe2O4 nano particles. Materials Letters, 60(29–30), 3548 (2006); https://doi.org/10.1016/j.matlet.2006.03.055.

H.Moradmard, et al. Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. Journal of Alloys and Compounds, 650, 116 (2015); https://doi.org/10.1016/j.jallcom.2015.07.269.

Kant, Ravi, and Ajay Kumar Mann. A review of doped magnesium ferrite nanoparticles: introduction, synthesis techniques and applications." IJSRSET 4.7 (2018).

S. Kakati, M. K. Rendale, and S. N. Mathad, Synthesis, Characterization, and Applicationsof CoFe2O4 and M-CoFe2O4 [M = Ni, Zn, Mg, Cd, Cu, Rare Earth materials (RE)] Ferrites (A review), Int. J Self-Propag. High-Temp. Synth., 30(4), 189 (2021);https://doi.org/10.3103/S1061386221040038.

Nigam, Abhishek, and S. J. Pawar, Structural, magnetic, and antimicrobial properties of zinc doped magnesium ferrite for drug delivery applications. Ceramics International, 46(4), 4058 (2020); https://doi.org/10.1016/j.ceramint.2019.10.243.

R.Y.Kolekar, et al. Impact of Magnesium on Structural and Morphological Study of Co–Zn Ferrites, International Journal of Self-Propagating High-Temperature Synthesis, 33(1), 58 (2024); https://doi.org/10.3103/s1061386224010047.

K.V. Babu, B. Sailaja, K. Jalaiah, P.T. Shibeshi, M. Ravi, Effect of Zinc Substitutionon the Structural, Electrical and Magnetic Properties of Nano-Structured Ni0.5Co0.5Fe2O4 Ferrites, Phys. B, 534, 83 (2018); https://doi.org/10.1016/j.physb.2018.01.022.

Kulkarni Akshay B, Mathad Shridhar N, Manohara S.R, Deshpande Sandeep M, Understanding, Role of Cadmium Substitution on the Structural, Microstructural, Transport Properties of Ferrites Synthesized by Different Methods, Science of Sintering, 56(4), 417 (2024);https://doi.org/10.2298/SOS240305010K.

M.P. Reddy, A.M.A. Mohamed, X.B. Zhou, S. Du, Q. Huang, A Facile HydrothermalSynthesis, Characterization and Magnetic Properties of Mesoporous CoFe2O4 Nanospheres, J. Magn. MagnMater., 388 40 (2015); https://doi.org/10.1016/j.jmmm.2015.04.009.

Rodríguez-Flores, Tatiana, Falak Shafiq, and Roberto Nisticò, Synthesis, properties, and application in catalysis of Cu, Ni, Co, Zn ferrites: A comprehensive review study. Journal of Alloys and Compounds, 1036, 181926 (2025); https://doi.org/10.1016/j.jallcom.2025.181926.

Pendyala, Siva Kumar, et al. Effect of Mg doping on physical properties of Zn ferrite nanoparticles.Journal of the Australian Ceramic Society, 54,467 (2018);https://doi.org/10.1007/s41779-018-0173-8.

A.B. Kulkarni, S.N. Mathad, Variation in structural and mechanical properties of Cddoped Co-Zn ferrites, Materials Science for Energy Technologies, 2(3),455 (2019); https://doi.org/10.1016/j.mset.2019.03.003.

P.Saha, S.K. Shil, P.Roy, R.S. Auntu, N.I.Khan, &S.S. Sikder, Exploring the structural, magnetic, dielectric and electrical properties of solid state method synthesized Mn3+ substituted Co–Zn ferrites. Journal of Materials Science, 60(37), 17051 (2025); https://doi.org/10.1007/s10853-025-11449-6.

Sharma Rohit, et al. Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route, Journal of alloys and compounds, 684, 569 (2016); https://doi.org/10.1016/j.jallcom.2016.05.200.

Eman E. El-Nahass, , et al. Evaluation the toxic effects of Cobalt-Zinc Ferrite nanoparticles in experimental mice. Scientific Reports, 15(1), 6903 (2025); https://doi.org/10.1038/s41598-025-90043-x.

Numan Abbas, et al. Investigation of structural, electrical and thermoelectric properties of cobalt-zinc ferrites/graphenenanocomposite. Results in Physics, 59, 107576 (2024); https://doi.org/10.1016/j.rinp.2024.107576.

S.M.Ansari, et al. Effect of Manganese-Doping on the chemical and optical properties of cobalt ferrite nanoparticles, Materials Science and Engineering: B, 300 117134 (2024); https://doi.org/10.1016/j.ssc.2021.114500.

Verma, Kavita, Ashwini Kumar, and Dinesh Varshney, Effect of Zn and Mg doping on structural, dielectric and magnetic properties of tetragonal CuFe2O4, Current Applied Physics, 13(3), 467 (2013); https://doi.org/10.1016/j.cap.2012.09.015.

Somvanshi, Sandeep B., et al. Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis. Ceramics International, 46(7), 8640 (2020); https://doi.org/10.1016/j.ceramint.2019.12.097.

Mukhtar Muhammad Waqas, et al. Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications. Journal of Magnetism and Magnetic Materials, 381, 173178 (2015); https://doi.org/10.1016/j.jallcom.2018.06.168.

R.D. Waldron, Infrared spectra of ferrites, Physical review 99(6),1727(1955).

A.S. Pujar, A.B. Kulkarni, S.N. Mathad, C.S.Hiremath,M.K. Rendale, M.R. Patil,R.B.Pujar, Synthesis, Structural, FTIR and Electrical properties of CuxCo1-xFe2O4 ( x= 0,0.4,1 ) Prepared by Solid State Method, International Journal of self propagating high temperature synthesis, 27(3), 174 (2018);https://doi.org/10.3103/S1061386218030081.

Saafan, Samia A., et al. FTIR, DC, and AC electrical measurements of Mg Zn Nano-ferrites and their composites with Polybenzoxazine. Applied Physics A, 127, 1 (2021); https://doi.org/10.1039/d3ra04557a.

Patil, Kundan, The effects of cobalt and magnesium co-doping on the structural and magnetic properties of ZnFe2O4 synthesized using a sonochemical process.Solid State Communications 337, 114435 (2021); https://doi.org/10.1016/j.ssc.2021.114435.

M. K. Shobana, Photocatalytic and magnetic properties of Mg substituted cobalt ferrite. Materials Science and Engineering: B 286, 116030 (2022); https://doi.org/10.1016/j.mseb.2022.116030.

S.Kakati, S.Kuri, M.Rendale & S. Mathad,Soft-Hard Ferrite Composites by Green Synthesis: Structural and Magnetic Properties. Physics and Chemistry of Solid State, 26(2), 277 (2025); https://doi.org/10.15330/pcss.26.2.277-284.

Hussain, Muneer, et al. Tuning the magnetic behavior of zinc ferrite via cobalt substitution: a structural analysis.ACS omega, 9(2), 2536 (2024); https://doi.org/10.1021/acsomega.3c07251.

B.Akshay Kulkarni, N. Shridhar Mathad, Effect of cadmium doping on structural and magnetic studies of Co-Ni ferrites, Science of Sintering, 53 (2021); https://doi.org/10.2298/SOS2103407K.

Sarmah, Sikha, A comparative study on the structural, magnetic and dielectric properties of magnesium substituted cobalt ferrites, Ceramics International, 49(1), 1444 (2023); https://doi.org/10.1016/j.ceramint.2022.09.126.

Chahar, Deepika, Influence of Mg doping on the structural, electrical and dielectric properties of Co-Zn nanoferrites, Journal of Magnetism and Magnetic Materials, 544, 168726 (2022); https://doi.org/10.1007/s10948-020-05565-4.

Khan, Muhammad Zarrar, Iftikhar HussainGul, and Asad Malik. Improved Electrical Properties Displayed by Mg2+-Substituted Cobalt Ferrite Nano Particles, Prepared Via Co-precipitation Route. Journal of Superconductivity and Novel Magnetism, 33, 3133 (2020); https://doi.org/10.1007/s10948-020-05565-4.

Chahar, Deepika, Influence of Mg doping on the structural, electrical and dielectric properties of Co-Zn nanoferrites, Journal of Magnetism and Magnetic Materials, 544, 168726 (2022); https://doi.org/10.1016/j.jmmm.2021.168726.

Pradhan, A. K., S. Saha, and T. K. Nath. AC and DC electrical conductivity, dielectric and magnetic properties of Co0.65Zn 0.3Fe 2− xMoxO4 (x= 0.0, 0.1 and 0.2) ferrites, Applied Physics A, 123,1 (2017);https://doi.org/10.1007/s00339-017-1329-z.

M.A. Ahmed, Electrical Properties of Co-Zn Ferrites. Physica status solidi (a), 111(2), 567 (1989); https://doi.org/10.1002/pssa.2211110222.

R. C. Bharamagoudar, J. Angadi V, A. S.Patil, L. B .Kankanawadi, S.N.Mathad, Structural and dielectrical studies of nano Mn-Zn ferrites prepared by combustion method,International Journal of Self-Propagating High-Temperature Synthesis, 28(2), 132 (2019); https://doi.org/10.3103/S1061386219020031.

Ahmad, Syed Ismail, et al. Dielectric, impedance, AC conductivity and low-temperature magnetic studies of Ce and Sm co-substituted nanocrystalline cobalt ferrite. Journal of Magnetism and Magnetic Materials, 492 165666 (2019);https://doi.org/10.1016/j.jmmm.2019.165666.

R.C. Bharamagoudar, A.S. Patil, S.N. Mathad, Exploring the Influence of Zinc Doping on Nano Ferrites: A Review of Structural, Dielectric, and Magnetic Studies. Int. J Self-Propag. High-Temp. Synth., 33, 165 (2024); https://doi.org/10.3103/S1061386224700110.

M.U.Islam, et al. Electrical transport properties of CoZn ferrite–SiO2 composites prepared by co-precipitation technique. Materials Chemistry and Physics, 109(2-3), 482 (2008); https://doi.org/10.1016/j.matchemphys.2007.12.021.

Rakesh Vishwarup, Shridhar N. Mathad, Amir Altinawi, Raed H Althomali, Anish Khan, Ibraheem A Mkhalid, Khalid A Alzahrani, B C Anand, Vikas Gupta, Effect of zinc substitution on structural, electrical, dielectric and magnetic properties of magnesium nano-ferrites prepared by co-precipitation route, Inorganic Chemistry Communications, 167,112733 (2024); https://doi.org/10.1016/j.inoche.2024.112733.

Ashok Kumar, Structural, magnetic and dielectric properties of MWCNTs-incorporated Cobalt-Zinc Ferrite Nanocomposites, Ceramics International, 51(16), 21470(2025); https://doi.org/10.1016/j.ceramint.2025.02.306.

M.H. Jameel, et al. Structural, optical and morphological properties of zinc-doped cobalt-ferrites CoFe2−xZnxO4 (x=0.1-0.5), Digest Journal of Nanomaterials&Biostructures (DJNB) 16(2), (2021).

Ali A. Ati, et al. Structural, morphology, magnetic, and electrochemical characterization of pure and magnesium-substituted cobalt ferrite nanoparticles, Journal of Materials Science: Materials in Electronics, 36(4), 252 (2025); https://doi.org/10.1007/s10854-025-14331-y.

Chahar, Deepika, et al. Influence of Mg doping on the structural, electrical and dielectric properties of Co-Zn nanoferrites, Journal of Magnetism and Magnetic Materials 544, 168726 (2022); https://doi.org/10.1016/j.jmmm.2021.168726.

P.Kashid, S. N. Mathad, & M. R. Shedam, Impact of Cd+ 2 substitutions on structural and mechanical properties of Co0. 6Ni0. 4-xCdxFe2O4 (0.00≤ x≤ 0.40) system. Physics and Chemistry of Solid State, 24(4), 595-602 (2023); DOI:10.15330/pcss.24.4.595-602.

Downloads

Published

2025-12-26

How to Cite

Ravikumar, Y., Kapatkar , S., Mathad, S., & Hegde , S. (2025). Magnesium-Doped Cobalt-Zinc Ferrite: A Study on Enhanced Magnetic and Electrical Properties: Magnesium-Doped Cobalt-Zinc Ferrites. Physics and Chemistry of Solid State, 26(4), 895–904. https://doi.org/10.15330/pcss.26.4.895-904

Issue

Section

Scientific articles (Physics)