Optical, structural and radiospectroscopic studies of ZnO/MnO nanostructures synthesized by ultrasonic spray pyrolysis

Authors

  • О.V. Kovalenko O. H. Dnipro National University, Dnipro, Ukraine
  • V.Yu. Vorovsky O. H. Dnipro National University, Dnipro, Ukraine
  • N.I. Berezovska Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Institute of Physics, NAS of Ukraine, Kyiv, Ukraine
  • I.M. Dmytruk Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Institute of Physics, NAS of Ukraine, Kyiv, Ukraine
  • D.V. Korbutyak V.E. Lashkaryov Institute of Semiconductors Physics, NAS of Ukraine, Kyiv, Ukraine
  • V.O. Yukhymchuk V.E. Lashkaryov Institute of Semiconductors Physics, NAS of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15330/pcss.26.2.447-456

Keywords:

Zinc oxide, Nanocrystals, Magnetic Impurities, Defects, Ultrasonic spray pyrolysis, X-ray diffraction, Electron paramagnetic resonance, Raman scattering, Photoluminescence

Abstract

The technology for the synthesis of nanocrystals (NCs) of pure ZnO and ZnO doped with a magnetic Mn impurity in concentrations of 2% and 4% by ultrasonic spray pyrolysis has been developed. The structural, morphological and optical properties of syntesied ZnO NCs have been studied with methods of X-ray diffraction, scanning electron microscopy, electron paramagnetic resonance (EPR), spectroscopy of Raman scattering and photoluminescence. The defective near-surface layer in ZnO:Mn NCs has been identified based on the analysis of the EPR spectra. Thermal annealing of samples at T = 850°C leads to the ordering of the crystal structure of ZnO:Mn NCs. The solubility limit of the Mn impurity is less than 2%. Raman spectra analysis has revealed that ZnO:Mn NCs are covered with ZnMn2O4 and d--MnO2 shells. A significant increase in the intensity of exciton photoluminescence for ZnO NCs caused by the improvement of the structural perfection of NCs is to be a result of increasing the liquid flow rate to 40 l/h during the synthesis process. Thus, the optimal technological regimes to form high-quality, structurally perfect ZnO NCs can be elaborated by changing the liquid flow rate during the synthesis process.

References

D. Raoufi, Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method, Renewable Energy, 50, 932 (2013); https://doi.org/10.1016/j.renene.2012.08.076.

M. M. Ba-Abbad, A .A. H. Kadhum, A. B. Mohamad, M. S. Takriff, K. Sopian, Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol-gel technique, Journal of Industrial and Engineering Chemistry, 19(1), 99 (2013); https://doi.org/10.1016/j.jiec.2012.07.010.

T. Wangensteen, T. Dhakal, M. Merlak, P. Mukherjee, M. H. Phan, S. Chandra, H. Srikanth, S. Witanachchi, Growth of uniform ZnO nanoparticles by a microwave plasma process, Journal of Alloys and Compounds, 509(24), 6859 (2011); https://doi.org/10.1016/j.jallcom.2011.03.161.

B. W. Chieng, Y. Y. Loo, Synthesis of ZnO nanoparticles by modified polyol method, Materials Letters, 73, 78 (2012); https://doi.org/10.1016/j.matlet.2012.01.004.

P. Rai, Y.-T. Yu, Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application, Sensors and Actuators B: Chemical, 173, 58 -65(2012); https://doi.org/10.1016/j.snb.2012.05.068.

M. Vaghayenegar, A. Kermanpur, M. H. Abbasi. Bulk syntheis of ZnO nanoparticles by the one-step electromagnetic levitational gas condensation method. Ceramics International, 38(7), 5871 (2012); https://doi.org/10.1016/j.ceramint.2012.04.038.

S. C. Tsai, Y. L. Song, C. S. Tsai, C. C. Yang, W. Y. Chiu, H. M. Lin, Ultrasonic spray pyrolysis for nanoparticles synthesis, Journal of Materials Science, 39, 3647 (2004). https://doi.org/10.1023/B:JMSC.0000030718.76690.11.

O. V. Kovalenko, V. Yu. Vorovsky, Dependence of magnetic properties of ZnO:Mn nanocrystals on synthesis conditions, Journal of nano- and electronic physics, 14(3). 03030 (2022); https://doi.org/10.21272/jnep.14(3).03030.

[9] O. V. Kovalenko, V. Yu. Vorovsky, O. V. Khmelenko, Ye. G. Plakhtii, Peculiarities of doping of ZnO:Mn nanocrystals as during their synthesis by the aerosol pyrolysis method, Journal of Physics and Electronics, 28(2), 91 (2020); https://doi.org/10.15421/332027.

M. Hasan, Q. Liu, A. Kanwal, T. Tariq, G. Mustafa, S. Batool, M. Ghorbanpour, A comparative study on green synthesis and characterization of Mn doped ZnO nanocomposite for antibacterial and photocatalytic applications, Scientific Reports, 14, 7528 (2024); https://doi.org/10.1038/s41598-024-58393-0.

D. Toloman, A. Mesaros, A. Popa, O. Raita, T. D. Silipas, B. S. Vasile, O. Pana, L. M. Giurgiu, Evidence by EPR of ferromagnetic phase in Mn-doped ZnO nanoparticles annealed at different temperatures. Journal of Alloys and Compounds, 551, 502 (2013); https://doi.org/10.1016/j.jallcom.2012.10.183.

S. Bhattacharyya, D. Zitoun, A. Gedanken, Electron Paramagnetic Resonance Spectroscopic Investigation of Manganese Doping in ZnL (L = O, S, Se, Te) Nanocrystals, Nanoscience and Nanotechnology Letters, 3(4), 541 (2011). https://doi.org/10.1166/nnl.2011.1208.

H. Zhou, D. M. Hofmann, A. Hofstaetter, B. K. Meyer, Magnetic resonance investigation of Mn2+ in ZnO nanocrystals. J. Appl. Phys., 94(3), 1965 (2003). http://dx.doi.org/10.1063/1.1586986.

O. V. Kovalenko, V. Yu. Vorovsky, O. V. Khmelenkо, The effect of heat treatment on the magnetic properties of ZnO:Mn nananocrystals obtained by ultrasonic aerosol pyrolysis. Functional Materials, 27(4), 687 (2020); https://doi.org/10.15407/fm27.04.687.

O. V. Kovalenko, V. Yu. Vorovsky, O. V. Khmelenko, O. I. Kushnerov, Effect of short-term heat treatment in the hydrogen on magnetic properties of ZnO:Mn nanocrystals. Physics and Chemistry of Solid State, 23(3), 569 (2022). https://doi.org/10.15330/pcss.23.3.569-574.

E. V. Lavrov, F. Herklotz, J. Weber, Identification of two hydrogen donors in ZnO, Phys. Rev. B, 79, 165210 (2009); https://doi.org/10.1103/PhysRevB.79.165210.

D.M. Hoffmann, A. Hofstaetter, F. Leiter et al., Hydrogen: A Relevant Shallow Donor in Zinc Oxide, Phys. Rev. Lett., 88 (4), 045504 (2002); https://doi.org/10.1103/PhysRevLett.88.045504.

B. Yin, S. Zhang, H. Jiang, F. Qu, X. Wu, Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage, J. Mater. Chem. A, 3, 5722 (2015); https://doi.org/10.1039/C4TA06943A.

B. Hadzic, N. Romcevic, M. Romcevic, I. Kuryliszyn-Kudelska, W. Dobrowolski, U. Narkiewicz, D. Sibera, Raman study of surface optical phonons in hydrothermally obtained ZnO(Mn) nanoparticles, Optical Materials, 58, 317, (2016); https://doi.org/10.1016/j.optmat.2016.03.033.

F. Bertolotti, A. Tǎbǎcaru, V. Muşat, N. Ţigǎu, A. Cervellino, N. Masciocchi, A. Guagliardi, Band Gap Narrowing in Silane-Grafted ZnO Nanocrystals. A Comprehensive Study by Wide-Angle X-ray Total Scattering Methods, J. Phys. Chem. C, 125(8), 4806 (2021); https://doi.org/10.1021/acs.jpcc.0c10502.

B. Cao, W. Cai, H. Zeng, Temperature-dependent shifts of three emission bands for ZnO nanoneedle arraus, Appl. Phys. Letters, 88, 161101 (2006); https://doi.org/10.1063/1.2195694.

A. F. Kohan, G. Ceder, D. Morgan, Chris G. Van de Walle, First-principles study of native point defects in ZnO, Phys. Rev. B, 61, 15019 (2000); https://doi.org/10.1103/PhysRevB.61.15019.

F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, I. Tanaka, Energetics of native defects in ZnO, J. Appl. Phys., 90(2), 824 (2001); https://doi.org/10.1063/1.1380994.

P. Zhan, W. Wang, C. Liu, Y. Hu, Zh. Li Zh, Zhang, P. Zhang, B. Wang, X. Cao, Oxygen vacancy–induced ferromagnetism in un-doped ZnO thin films, J. Appl. Phys. 111, 033501 (2012); http://dx.doi.org/10.1063/1.3679560.

[25]. C. Gaspar, F. Costa, N. Monteiro. Optical characterization of ZnO. Journal of Materials Science: Materials in Electronics. 12, 269–271 (2001).

F. Güell, P. R. Martínez-Alanis, Tailoring the Green, Yellow and Red defect emission bands in ZnO nanowires via the growth parameters. Journal of Luminescence, 210, 128 (2019); https://doi.org/10.1016/j.jlumin.2019.02.017.

Y. N. Chen, S. J. Xu, C. C. Zheng, J. Q. Ning, F. C. C. Ling, W. Anwand, G. Brauer, W. Skorupa, Nature of red luminescence bad in research-grade ZnO single crystals: A “self-activated” configurational transition. Applied Physics Letters. 105, 041912 (2014); http://dx.doi.org/10.1063/1.4892356.

R. Karmakar, S. K. Neogi, Aritra Banerjee, S. Bandyopadhyay, Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film, Applied Surface Science. 263, 671 (2012); https://doi.org/10.1016/j.apsusc.2012.09.133.

B. Panigrahy, M. Aslam, D. Bahadur, Aqueous Synthesis of Mn- and Co-Doped ZnO Nanorods, J. Phys. Chem. C, 114(27), 11758 (2010); https://doi.org/10.1021/jp102163b.

Published

2025-06-30

How to Cite

Kovalenko О., Vorovsky, V., Berezovska, N., Dmytruk, I., Korbutyak, D., & Yukhymchuk, V. (2025). Optical, structural and radiospectroscopic studies of ZnO/MnO nanostructures synthesized by ultrasonic spray pyrolysis. Physics and Chemistry of Solid State, 26(2), 447–456. https://doi.org/10.15330/pcss.26.2.447-456

Issue

Section

Scientific articles (Physics)