Catalyst-Assisted H2O2 Systems for Bacterial Disinfection of Wastewater: From UV/Visible Synergy to Electro-/Photo-Fenton Pathways

Authors

  • Viktor Husak Department of Biochemistry and Biotechnology, Vasyl Stefanyk Carpathian National University, Ivano-Frankivsk, Ukraine
  • Volodymyr Shvadchak Department of Biochemistry and Biotechnology, Vasyl Stefanyk Carpathian National University, Ivano-Frankivsk, Ukraine
  • Liubov Soltys Department of Сhemistry, Vasyl Stefanyk Carpathian National University, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.26.4.738-751

Keywords:

Hydrogen peroxide, Photo-Fenton catalysis, UV/H₂O₂, Wastewater treatment, Advanced oxidation processes

Abstract

Hydrogen peroxide assisted advanced oxidation processes are pivotal for next-generation water treatment, yet progress is slowed by fragmented evidence, non-uniform metrics, and scale-up blind spots. This review consolidates mechanisms and performance across homogeneous and heterogeneous Fenton and photo-Fenton catalysts, including Prussian blue analogues, MOF-derived oxides and carbons, and spinels, as well as peroxidase-like nanozymes, carbon co-catalysts, and photolytic UV/H₂O₂ and visible or solar routes. We harmonize conditions through a benchmarking scheme that combines energy per order, oxidant utilization efficiency, photon-normalized kinetics, mineralization selectivity, and durability with leaching tests. Kinetic mapping pinpoints limitations involving H₂O₂ activation versus self-scavenging, metal redox cycling, mass transfer, and pH or matrix effects from bicarbonate, halides, and natural organic matter. We address by-product control and safety through staged oxidant delivery, matrix-aware pretreatment, and in situ H₂O₂ generation in electro-Fenton systems. Screening techno-economic and life-cycle indicators delineates regimes where UV/H₂O₂ is favored, where solar photo-Fenton narrows the energy gap, and where photoelectrochemical architectures extend durability. From these insights we propose design rules for materials, reactors, and operation, and we outline reporting standards that couple photon accounting, stability protocols, and transparent cost and impact metrics to enable fair comparisons and faster translation.

References

P. Kokkinos, D. Venieri, D. Mantzavinos, Advanced Oxidation Processes for Water and Wastewater Viral Disinfection. A Systematic Review, Food and Environmental Virology, 13, 283 (2021); https://doi.org/10.1007/s12560-021-09481-1.

D. Wang, L. Cai, S. Song, S. Giannakis, J. Ma, D. Vione, C. Pulgarin, Bacterial inactivation in sunlit surface waters is dominated by reactive species that emanate from the synergy between light, iron, and natural organic matter, Applied Catalysis B: Environmental., 343, 123573 (2024); https://doi.org/10.1016/j.apcatb.2023.123573.

P.B. Vilela, R.P. Mendonça Neto, M.C.V.M. Starling, A. da S. Martins, G.F.F. Pires, F.A.R. Souza, C.C. Amorim, Metagenomic analysis of MWWTP effluent treated via solar photo-Fenton at neutral pH: Effects upon microbial community, priority pathogens, and antibiotic resistance genes, Science of the Total Environment., 801, 149599 (2021); https://doi.org/10.1016/j.scitotenv.2021.149599.

Y. Ahmed, J. Zhong, Z. Yuan, J. Guo, Roles of reactive oxygen species in antibiotic resistant bacteria inactivation and micropollutant degradation in Fenton and photo-Fenton processes, Journal of Hazardous Materials, 430, 128408 (2022); https://doi.org/10.1016/j.jhazmat.2022.128408.

Y. Wu, A. Bianco, M. Brigante, W. Dong, P. De Sainte-Claire, K. Hanna, G. Mailhot, Sulfate Radical Photogeneration Using Fe-EDDS: Influence of Critical Parameters and Naturally Occurring Scavengers, Environmental Science and Technology, 49, 14343–14349 (2015); https://doi.org/10.1021/acs.est.5b03316.

N. Thomas, D.D. Dionysiou, S.C. Pillai, Heterogeneous Fenton catalysts: A review of recent advances, Journal of Hazardous Materials. 404, 124082 (2021); https://doi.org/10.1016/j.jhazmat.2020.124082.

X. Huang, N. Zhu, F. Mao, Y. Ding, S. Zhang, H. Liu, F. Li, P. Wu, Z. Dang, Y. Ke, Enhanced heterogeneous photo-Fenton catalytic degradation of tetracycline over yCeO2/Fh composites: Performance, degradation pathways, Fe2+ regeneration and mechanism, Chemical Engineering Journal, 392 123636 (2020); https://doi.org/10.1016/j.cej.2019.123636.

R. Zhu, Y. Zhu, H. Xian, L. Yan, H. Fu, G. Zhu, Y. Xi, J. Zhu, H. He, CNTs/ferrihydrite as a highly efficient heterogeneous Fenton catalyst for the degradation of bisphenol A: The important role of CNTs in accelerating Fe(III)/Fe(II) cycling, Applied Catalysis B: Environmental., 270, 118891 (2020); https://doi.org/10.1016/j.apcatb.2020.118891.

Y. Cheng, S. Zhang, Z. Wang, B. Wang, J. You, R. Guo, H. Zhang, Review on spinel ferrites-based materials (MFe2O4) as photo-Fenton catalysts for degradation of organic pollutants, Separation and Purification Technology, 318, 123971 (2023); https://doi.org/10.1016/j.seppur.2023.123971.

Y. Xiang, Y. Huang, B. Xiao, X. Wu, G. Zhang, Magnetic yolk-shell structure of ZnFe2O4 nanoparticles for enhanced visible light photo-Fenton degradation towards antibiotics and mechanism study, Applied Surface Science, 513, 145820 (2020); https://doi.org/10.1016/j.apsusc.2020.145820.

M. Usman, A. Ahmed, Z. Ji, B. Yu, M. Rafiq, Y. Shen, H. Cong, Enhanced heterogenous photo-Fenton degradation of tetracycline in aqueous medium by visible light responsive sulphur dopped zinc ferrite nanoparticles, Materials Today Chemistry, 26 (2022); https://doi.org/10.1016/j.mtchem.2022.101003.

A. Kalam, A.G. Al-Sehemi, M. Assiri, G. Du, T. Ahmad, I. Ahmad, M. Pannipara, Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light, Results in Physics, 8, 1046 (2018); https://doi.org/10.1016/j.rinp.2018.01.045.

M. Ismael, M. Wark, Photocatalytic activity of CoFe2O4/g-C3N4 nanocomposite toward degradation of different organic pollutants and their inactivity toward hydrogen production: The role of the conduction band position, FlatChem., 32, 100337 (2022); https://doi.org/10.1016/j.flatc.2022.100337.

Y. Sun, J. Zhou, D. Liu, X. Li, H. Liang, Enhanced catalytic performance of Cu-doped MnFe2O4 magnetic ferrites: Tetracycline hydrochloride attacked by superoxide radicals efficiently in a strong alkaline environment, Chemosphere, 297 (2022); https://doi.org/10.1016/j.chemosphere.2022.134154.

S. Kanithan, N. Arun Vignesh, K.M. Katubi, P.S. Subudhi, E. Yanmaz, J. Arockia Dhanraj, N.S. Alsaiari, M. Abualnaja, M. Sukumar, M. Sundararajan, S. Baskar, S. Sahu, C.S. Dash, Enhanced optical, magnetic, and photocatalytic activity of Mg2+ substituted NiFe2O4 spinel nanoparticles, Journal of Molecular Structure, 1265, 133289 (2022); https://doi.org/10.1016/j.molstruc.2022.133289.

L. Liang, L. Ji, Z. Ma, Y. Ren, S. Zhou, X. Long, C. Cao, Application of Photo-Fenton-Membrane Technology in Wastewater Treatment: A Review, Membranes, 13 1 (2023); https://doi.org/10.3390/membranes13040369.

S. Lee, B. Bayarkhuu, Y. Han, H.W. Kim, S. Jeong, C. Boo, J. Byun, Multifunctional photo-Fenton-active membrane for solar-driven water purification, Journal of Membrane Science, 660, 120832 (2022); https://doi.org/10.1016/j.memsci.2022.120832.

C. Yan, Z. Cheng, J. Wei, Q. Xu, X. Zhang, Z. Wei, Efficient degradation of antibiotics by photo-Fenton reactive ceramic membrane with high flux by a facile spraying method under visible LED light, Journal of Cleaner Production, 366, 132849 (2022); https://doi.org/10.1016/j.jclepro.2022.132849.

J. Gao, S. Ma, M. Xu, M. Yuan, J. Li, J. Xue, M. Wang, Photo-Fenton superwettable NiFe2O4/TA/PVDF composite membrane for organic pollutant degradation with successively oil-in-water separation, Chemosphere, 286, 131705 (2022); https://doi.org/10.1016/j.chemosphere.2021.131705.

X. Dong, X. Liu, M. Cheng, D. Huang, G. Zhang, W. Wang, L. Du, G. Wang, H. Liu, Prussian blue and its analogues: Reborn as emerging catalysts for a Fenton-like process in water purification, Coordination Chemistry Reviews, 482 (2023); https://doi.org/10.1016/j.ccr.2023.215067.

X. Liu, W. Wang, H. Lin, Y. Shen, Q. Fang, F. Liu, Construction of hierarchical Prussian blue microcrystal with high sunlight absorption for efficient photo-thermal degradation of organic pollutants, Separation and Purification Technology, 269, 118724 (2021); https://doi.org/10.1016/j.seppur.2021.118724.

Q. Wang, Y. Yang, S. Ma, J. Wu, T. Yao, Preparation of Fe3O4@Prussian blue core/shell composites for enhanced photo-Fenton degradation of rhodamine B, Colloids and Surfaces A, Physicochemical and Engineering Aspects, 606, 125416 (2020); https://doi.org/10.1016/j.colsurfa.2020.125416.

S. Singh, P.C. Pandey, Synthesis and application of functional Prussian blue nanoparticles for toxic dye degradation, Journal of Environmental Chemical Engineering, 8, 103753 (2020); https://doi.org/10.1016/j.jece.2020.103753.

J. Wei, M. Yuan, S. Wang, X. Wang, N. An, G. Lv, L. Wu, Recent advances in metal organic frameworks for the catalytic degradation of organic pollutants, Collagen and Leather, 5 (2023); https://doi.org/10.1186/s42825-023-00140-8.

W. Xu, W. Xue, H. Huang, J. Wang, C. Zhong, D. Mei, Morphology controlled synthesis of α-Fe2O3-x with benzimidazole-modified Fe-MOFs for enhanced photo-Fenton-like catalysis, Applied Catalysis B: Environmental, 291, 120129 (2021); https://doi.org/10.1016/j.apcatb.2021.120129.

S. Huang, Y. Wang, S. Qiu, J. Wan, Y. Ma, Z. Yan, Q. Xie, In-situ fabrication from MOFs derived MnxCo3-x@C modified graphite felt cathode for efficient electro-Fenton degradation of ciprofloxacin, Applied Surface Science, 586, 152804 (2022); https://doi.org/10.1016/j.apsusc.2022.152804.

Y. Li, X. Li, B. Wang, Constructing tunable coordinatively unsaturated sites in Fe-based metal-organic framework for effective degradation of pharmaceuticals in water: Performance and mechanism, Chemosphere, 310, 136816 (2023); https://doi.org/10.1016/j.chemosphere.2022.136816.

J. Jin, L. Li, L. Zhang, Z. Luan, S. Xin, K. Song, Progress in the Application of Carbon Dots-Based Nanozymes, Frontiers in Chemistry, 9, 1 (2021); https://doi.org/10.3389/fchem.2021.748044.

J. Kong, F. Zhou, Preparation and Application of Carbon Dots Nanozymes, Antioxidants, 13 (2024); https://doi.org/10.3390/antiox13050535.

D. Zhao, R. Wang, C. Zhang, X. Xiao, Preparation of Carbon Dots with Peroxidase-like Activity and Their Application in Staphylococcus aureus Detection and Antimicrobial Susceptibility Test, Langmuir, 41, 6408 (2025); https://doi.org/10.1021/acs.langmuir.5c00632.

S. Zhuo, J. Fang, M. Li, J. Wang, C. Zhu, J. Du, Manganese(II)-doped carbon dots as effective oxidase mimics for sensitive colorimetric determination of ascorbic acid, Microchimica Acta, 186 (2019); https://doi.org/10.1007/s00604-019-3887-6.

W. Kang, A. Lee, Y. Tae, B. Lee, J.S. Choi, Enhancing catalytic efficiency of carbon dots by modulating their Mn doping and chemical structure with metal salts, RSC Advances, 13, 8996 (2023); https://doi.org/10.1039/d3ra01001e.

Y. Feng, J. Qin, Y. Zhou, Q. Yue, J. Wei, Spherical mesoporous Fe-N-C single-atom nanozyme for photothermal and catalytic synergistic antibacterial therapy, Journal of Colloid and Interface Science, 606, 826–836 (2022); https://doi.org/10.1016/j.jcis.2021.08.054.

S. Chen, W. Lu, R. Xu, J. Tan, X. Liu, Pyrolysis-free and universal synthesis of metal-NC single-atom nanozymes with dual catalytic sites for cytoprotection, Carbon, 201, 439 (2023); https://doi.org/10.1016/j.carbon.2022.09.034.

Y. Shi, J. Ma, Y. Chen, Y. Qian, B. Xu, W. Chu, D. An, Recent progress of silver-containing photocatalysts for water disinfection under visible light irradiation: A review, Science of the Total Environment, 804, 150024 (2022); https://doi.org/10.1016/j.scitotenv.2021.150024.

B. Niu, D. Wu, J. Wang, L. Wang, W. Zhang, Salt-sealing-pyrolysis derived Ag/ZnO@C hollow structures towards efficient photo-oxidation of organic dye and water-born bacteria, Applied Surface Science, 528, 146965 (2020); https://doi.org/10.1016/j.apsusc.2020.146965.

A. Wang, Q. Zhu, Z. Xing, Multifunctional quaternized chitosan@surface plasmon resonance Ag/N-TiO2 core-shell microsphere for synergistic adsorption-photothermal catalysis degradation of low-temperature wastewater and bacteriostasis under visible light, Chemical Engineering Journal, 393, 124781 (2020); https://doi.org/10.1016/j.cej.2020.124781.

D. Pino-Sandoval, M. Villanueva-Rodríguez, M.E. Cantú-Cárdenas, A. Hernández-Ramírez, Performance of Ag-Cu/TiO2 photocatalyst prepared by sol-gel method on the inactivation of Escherichia coli and Salmonella typhimurium, Journal of Environmental Chemical Engineering, 8 (2020); https://doi.org/10.1016/j.jece.2020.104539.

M. Li, D. Li, Z. Zhou, P. Wang, X. Mi, Y. Xia, H. Wang, S. Zhan, Y. Li, L. Li, Plasmonic Ag as electron-transfer mediators in Bi2MoO6/Ag-AgCl for efficient photocatalytic inactivation of bacteria, Chemical Engineering Journal, 382 (2020); https://doi.org/10.1016/j.cej.2019.122762.

M. Kohantorabi, S. Giannakis, G. Moussavi, M. Bensimon, M.R. Gholami, C. Pulgarin, An innovative, highly stable Ag/ZIF-67@GO nanocomposite with exceptional peroxymonosulfate (PMS) activation efficacy, for the destruction of chemical and microbiological contaminants under visible light, Journal of Hazardous Materials, 413, 125308 (2021); https://doi.org/10.1016/j.jhazmat.2021.125308.

L. Yang, H. Yang, S. Yin, X. Wang, M. Xu, G. Lu, Z. Liu, H. Sun, Fe Single-Atom Catalyst for Efficient and Rapid Fenton-Like Degradation of Organics and Disinfection against Bacteria, Small, 18, 1 (2022); https://doi.org/10.1002/smll.202104941.

F. Hashemzadeh, A. Geppert, L.J. Jackson, J.J. Harrison, G. Achari, Hydrogen Peroxide Augments the Disinfection Efficacy of 280 nm Ultraviolet LEDs against Antibiotic-Resistant Uropathogenic Escherichia coli Otherwise Tolerant to Germicidal Irradiation, ACS Omega, (2025); https://doi.org/10.1021/acsomega.5c02971.

D. Leong, H. Bin Chen, G.S. Wang, Application of UVC-LED/H2O2 in wastewater treatments: treatment efficacy on disinfection byproduct precursors and micropollutants, Sustainable Environment Research, 33 (2023); https://doi.org/10.1186/s42834-023-00194-7.

R. Gao, S.H. Gao, J. Li, F. Huang, Y. Zhao, J. Xie, Y. Pan, W. Zhang, A. Wang, Removal of disinfection residual bacteria in UV222, UV222/H2O2 and UV222/peroxymonosulfate systems: what is the safe usage for wastewater reclamation, Water Research, 282, 123602 (2025); https://doi.org/10.1016/j.watres.2025.123602.

M. Adeel, G. Maniakova, L. Rizzo, Tertiary/quaternary treatment of urban wastewater by UV/H2O2 or ozonation: Microplastics may affect removal of E. coli and contaminants of emerging concern, Science of the Total Environment. 907, 167940 (2024); https://doi.org/10.1016/j.scitotenv.2023.167940.

A.L.R. Gomes, S. Ribeirinho-Soares, L.M. Madeira, O.C. Nunes, C.S.D. Rodrigues, Disinfection of Secondary Urban Wastewater Using Hydrogen Peroxide Combined with UV/Visible Radiation: Effect of Operating Conditions and Assessment of Microorganism Competition, Water (Switzerland), 17 (2025); https://doi.org/10.3390/w17040596.

N. Rahman, S.R. Chaganti, R. Seth, D.D. Heath, Comprehensive evaluation of UV inactivation of E. coli using multiple gene targets and real-time quantitative PCR, Water Research X. 26, 100285 (2025); https://doi.org/10.1016/j.wroa.2024.100285.

K.D. Rauch, S.A. MacIsaac, B. Reid, T.J. Mullin, A.J. Atkinson, A.L. Pimentel, A.K. Stoddart, K.G. Linden, G.A. Gagnon, A critical review of ultra-violet light emitting diodes as a one water disinfection technology, Water Research X, 25, 100271 (2024); https://doi.org/10.1016/j.wroa.2024.100271.

H.Y. Buse, J.S. Hall, G.L. Hunter, J.A. Goodrich, Differences in UV-C LED Inactivation of Legionella pneumophila Serogroups in Drinking Water, Microorganisms, 10, 1 (2022); https://doi.org/10.3390/microorganisms10020352.

S.A. MacIsaac, K.D. Rauch, T. Prest, R.M. Simons, G.A. Gagnon, A.K. Stoddart, Improved disinfection performance for 280 nm LEDs over 254 nm low-pressure UV lamps in community wastewater, Scientific Reports, 13, 1 (2023); https://doi.org/10.1038/s41598-023-34633-7.

J. Zeng, M. Zhang, X. Qin, Y. He, X. Liu, Y. Zhu, Z. Liu, W. Li, H. Dong, Z. Qiang, J. Lian, Quenching residual H2O2 from UV/H2O2 with granular activated carbon: A significant impact of bicarbonate, Chemosphere, 354 (2024); https://doi.org/10.1016/j.chemosphere.2024.141670.

Y. Tang, C.S. Lee, H. Walker, C. Gobler, O. Apul, A.K. Venkatesan, X. Mao, Effect of residual H2O2 on the removal of advanced oxidation byproducts by two types of granular activated carbon, Journal of Environmental Chemical Engineering, 9, 106838 (2021); https://doi.org/10.1016/j.jece.2021.106838.

A. Nazir, P. Huo, H. Wang, Z. Weiqiang, Y. Wan, A review on plasmonic-based heterojunction photocatalysts for degradation of organic pollutants in wastewater, Journal of Materials Science, 58, 6474 (2023); https://doi.org/10.1007/s10853-023-08391-w.

A. Amirjani, N.B. Amlashi, Z.S. Ahmadiani, Plasmon-Enhanced Photocatalysis Based on Plasmonic Nanoparticles for Energy and Environmental Solutions: A Review, ACS Applied Nano Materials, 6, 9085 (2023); https://doi.org/10.1021/acsanm.3c01671.

H. Li, W. Wang, K. Xu, B. Cheng, J. Xu, S. Cao, Solar-driven H2O2 production by S-scheme heterojunction photocatalyst, Chinese Journal of Catalysis, 72, 24 (2025); https://doi.org/10.1016/S1872-2067(24)60257-3.

W. Fang, L. Wang, S-Scheme Heterojunction Photocatalyst for Photocatalytic H2O2 Production: A Review, Catalysts, 13 (2023); https://doi.org/10.3390/catal13101325.

L. Zhang, J. Zhang, H. Yu, J. Yu, Emerging S-Scheme Photocatalyst, Advanced Materials, 34, 1 (2022); https://doi.org/10.1002/adma.202107668.

L. Wang, B. Zhu, B. Cheng, J. Zhang, L. Zhang, J. Yu, In-situ preparation of TiO2/N-doped graphene hollow sphere photocatalyst with enhanced photocatalytic CO2 reduction performance, Chinese Journal of Catalysis, 42, 1648 (2021); https://doi.org/10.1016/S1872-2067(21)63805-6.

C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, An Inorganic/Organic S-Scheme Heterojunction H2-Production Photocatalyst and its Charge Transfer Mechanism, Advanced Materials, 33, 1 (2021); https://doi.org/10.1002/adma.202100317.

Z. Jiang, B. Cheng, Y. Zhang, S. Wageh, A.A. Al‐Ghamdi, J. Yu, L. Wang, S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production, Journal of Materials Science and Technology, 124, 193 (2022); https://doi.org/10.1016/j.jmst.2022.01.029.

C. Lai, M. Xu, F. Xu, B. Li, D. Ma, Y. Li, L. Li, M. Zhang, D. Huang, L. Tang, S. Liu, H. Yan, X. Zhou, Y. Fu, H. Yi, An S-scheme CdS/K2Ta2O6 heterojunction photocatalyst for production of H2O2 from water and air, Chemical Engineering Journal, 452, 139070 (2023); https://doi.org/10.1016/j.cej.2022.139070.

Z. Ma, W. Guo, K. Zhang, N. Wang, Z. Li, J. Li, Construction of S-Scheme CuS/Bi5O7I Heterojunction for Boosted Photocatalytic Disinfection with Visible Light Exposure, Molecules, 28 (2023); https://doi.org/10.3390/molecules28073084.

H.P. Nguyen, H.N.M. Quang, H.C. Kung, L.T. Nguyen Huynh, T.L. Nguyen, S.J. You, B.W. Huang, M.T. Pham, G.P. Chang-Chien, Plasmonic and piezo-photocatalytic enhancement in Ag/g-C3N4 for efficient visible-light-driven H2O2 production, Optical Materials, 168, 117423 (2025); https://doi.org/10.1016/j.optmat.2025.117423.

S. Ezendam, M. Herran, L. Nan, C. Gruber, Y. Kang, F. Gröbmeyer, R. Lin, J. Gargiulo, A. Sousa-Castillo, E. Cortés, Hybrid Plasmonic Nanomaterials for Hydrogen Generation and Carbon Dioxide Reduction, ACS Energy Letters, 7, 778 (2022); https://doi.org/10.1021/acsenergylett.1c02241.

E. Brillas, J.M. Peralta-Hernandez, The recent development of innovative photoelectro-Fenton processes for the effective and cost-effective remediation of organic pollutants in waters, Chemosphere, 366, 143465 (2024); https://doi.org/10.1016/j.chemosphere.2024.143465.

I.C. Da Costa Soares, R. Oriol, Z. Ye, C.A. Martínez-Huitle, P.L. Cabot, E. Brillas, I. Sirés, Photoelectro-Fenton treatment of pesticide triclopyr at neutral pH using Fe(III)–EDDS under UVA light or sunlight, Environmental Science and Pollution Research, 28, 23833 (2021); https://doi.org/10.1007/s11356-020-11421-8.

P.R. dos Santos, M.E. de Oliveira Dourados, I. Sirés, E. Brillas, R.P. Cavalcante, P.S. Cavalheri, P.L. Paulo, D.R.V. Guelfi, S.C. de Oliveira, F. Gozzi, A. Machulek Junior, Greywater treatment by anodic oxidation, photoelectro-Fenton and solar photoelectro-Fenton processes: Influence of relevant parameters and toxicity evolution, Process Safety and Environmental Protection, 169, 879 (2023); https://doi.org/10.1016/j.psep.2022.11.058.

J. Gao, Y. Zhou, W. Zhang, X. Yang, Y. Yao, C. Xiao, X. Guo, J. Qi, Z. Zhu, Y. Yang, J. Li, Binder-Free Fe (II) Sustained-Release Electrode for Enhanced Flow-Through Electro-Fenton Degradation on Aniline-Containing Wastewater, ACS ES&T Water, 4, 4625 (2024); https://doi.org/10.1021/acsestwater.4c00679.

P. Petsi, K. Plakas, Z. Frontistis, I. Sirés, A critical assessment of the effect of carbon-based cathode properties on the in situ electrogeneration of H2O2, Electrochimica Acta, 470 (2023); https://doi.org/10.1016/j.electacta.2023.143337.

F. Li, K. Liu, Y. Bao, Y. Li, Z. Zhao, P. Wang, S. Zhan, Molecular level removal of antibiotic resistant bacteria and genes: A review of interfacial chemical in advanced oxidation processes, Water Research, 254 121373 (2024); https://doi.org/10.1016/j.watres.2024.121373.

Z. Yu, H. Rabiee, J. Guo, Synergistic effect of sulfidated nano zerovalent iron and persulfate on inactivating antibiotic resistant bacteria and antibiotic resistance genes, Water Research, 198, 117141 (2021); https://doi.org/10.1016/j.watres.2021.117141.

W. Sun, S. Wang, Z. Yu, X. Cao, Characteristics and application of iron-based materials in heterogeneous Fenton oxidation for wastewater treatment: a review, Environmental Science: Water Research & Technology, 9, 1266 (2023); https://doi.org/10.1039/D2EW00810F.

Z. Parsa, R. Dhib, M. Mehrvar, Continuous UV/H2O2 Process: A Sustainable Wastewater Treatment Approach for Enhancing the Biodegradability of Aqueous PVA, Sustainability (Switzerland), 16 (2024); https://doi.org/10.3390/su16167060.

D. Pelayo, A. Hernández-Pellón, G. Santos, M. Rumayor, I. Ortiz, M.J. Rivero, Performance of high-efficiency UV-C LEDs in water disinfection: Experimental, life cycle assessment, and economic analysis of different operational scenarios, Journal of Environmental Management, 364 (2024); https://doi.org/10.1016/j.jenvman.2024.121442.

S.A. MacIsaac, B. Reid, C. Ontiveros, K.G. Linden, A.K. Stoddart, G.A. Gagnon, UV LED wastewater disinfection: The future is upon us, Water Research X, 24, 100236 (2024); https://doi.org/10.1016/j.wroa.2024.100236.

M.Z. Demir, H. Guven, M.E. Ersahin, H. Ozgun, M.E. Pasaoglu, I. Koyuncu, Comparative Life Cycle Assessment of Four Municipal Water Disinfection Methods, Sustainability (Switzerland), 16 (2024); https://doi.org/10.3390/su16146104.

Downloads

Published

2025-11-06

How to Cite

Husak, V., Shvadchak, V., & Soltys, L. (2025). Catalyst-Assisted H2O2 Systems for Bacterial Disinfection of Wastewater: From UV/Visible Synergy to Electro-/Photo-Fenton Pathways. Physics and Chemistry of Solid State, 26(4), 738–751. https://doi.org/10.15330/pcss.26.4.738-751

Issue

Section

Review