Формування гетероструктур CdO/CdS/textured-ZnO/ZnO методом хімічного осадження

Автор(и)

  • Я.О. Сичікова Бердянський державний педагогічний університет, Бердянськ, Україна
  • А.С. Лазаренко Бердянський державний педагогічний університет, Бердянськ, Україна
  • С.С. Ковачов Бердянський державний педагогічний університет, Бердянськ, Україна
  • І.О. Бардус Бердянський державний педагогічний університет, Бердянськ, Україна
  • І.Т. Богданов Бердянський державний педагогічний університет, Бердянськ, Україна

DOI:

https://doi.org/10.15330/pcss.23.2.361-367

Ключові слова:

електрохімічне травлення, хімічне осадження, наноструктури, комбінаційне розсіювання світла, гетероструктура

Анотація

Гетероструктуру CdO/CdS/textured-ZnO/ZnO синтезували з використанням комбінації методів електрохімічного травлення та хімічного осадження. Електрохімічне травлення було застосовано для формування текстурованого шару ZnO.  Хімічне осадження розчину, що містив CdCl2 здійснювали для приготування плівки CdS з наночастиками CdO на поверхні. Отриманий нанокомпозит був охарактеризований за допомогою SEM, EDX та Raman методів для структурних, морфологічних та компонентних досліджень. Зображення SEM та спектри комбінаційного розсіювання світла показали існування кубічної фази нанокристалітів CdO. Дослідження SEM виявило дисперсію агломерованих наноструктур розміром 50–200 нм на поверхні плівки CdS.

Посилання

V. Serga, R. Burve, A. Krumina, M. Romanova, E. A. Kotomin, A. I. Popov, Extraction–pyrolytic method for TiO2 polymorphs production, Crystals 11(4), 431 (2021); https://doi.org/10.3390/cryst11040431.

V.Serga, R. Burve, A. Krumina, V. Pankratova, A. I. Popov, V. Pankratov. Study of phase composition, photocatalytic activity, and photoluminescence of TiO2 with Eu additive produced by the extraction-pyrolytic method, Journal of materials research and technology 13, 2350 (2021); https://doi.org/10.1016/j.jmrt.2021.06.029.

T. N. J. I. Edison, R. Atchudan, Y. R. Lee, Binder-free electro-synthesis of highly ordered nickel oxide nanoparticles and its electrochemical performance, Electrochimica Acta 283, 1609 (2018); https://doi.org/10.1016/j.electacta.2018.07.101.

Z. Alhashem, C. Awada, F. Ahmed, A.H. Farha. Structural and magnetic properties study of Fe2O3/NiO/Ni2FeO4 nanocomposites, Crystals 11(6), 613 (2021); https://doi.org/10.3390/cryst11060613.

A. Usseinov, Z. Koishybayeva, A. Platonenko, J. Purans, A.I. Popov, Vacancy defects in Ga2O3: First-principles calculations of electronic structure, Materials 14(23), 7384 (2021); https://doi.org/10.3390/ma14237384.

A. Usseinov, Z. Koishybayeva, A. Platonenko, A.I. Popov, Ab-Initio Calculations of Oxygen Vacancy in Ga2O3 Crystals, Latvian Journal of Physics and Technical Sciences 58(2), 3 (2021); https://doi.org/10.2478/lpts-2021-0007.

A.I. Popov, E.A. Kotomin, M.M. Kuklja, Quantum chemical calculations of the electron center diffusion in MgO crystals, Physica Status Solidi (B) Basic Research 195(1), 61 (1996); https://doi.org/10.1002/pssb.2221950107.

E. Shablonin, A.I. Popov, A. Lushchik, A. Kotlov, S. Dolgov, Excitation of different chromium centres by synchrotron radiation in MgO:Cr single crystals, Physica B: Condensed Matter 477, 133, (2015); https://doi.org/10.1016/j.physb.2015.08.032.

Z. Zhang, M. Wang, F. Wang, Plasma-assisted construction of CdO quantum dots/CdS semi-coherent interface for the photocatalytic bio-CO evolution, Chem Catalysis 2, 1 (2022); https://doi.org/10.1016/j.checat.2022.04.001.

L. Jin, Y. Wang, J. Wu, C. Su, H. Zhou, H. Xu, Properties of oxidation quantum dots-CdO/TiO2 heterostructures constructed as DSSC photoanodes, Materials Science in Semiconductor Processing 147, 106720 (2022); https://doi.org/10.1016/j.mssp.2022.106720.

M. A. Borysiewicz, ZnO as a functional material, a review, Crystals 9(10), 505 (2019); https://doi.org/10.3390/cryst9100505.

J. Theerthagiri, S. Salla, R. A. Senthil, P. Nithyadharseni, A. Madankumar, P. Arunachalam, H. S. Kim, A review on ZnO nanostructured materials: energy, environmental and biological applications, Nanotechnology 30(39), 392001 (2019); https://doi.org/10.1088/1361-6528/ab268a.

S. Goktas, A. Goktas, A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review, Journal of Alloys and Compounds 863, 158734 (2021); https://doi.org/10.1016/j.jallcom.2021.158734.

I.V. Rogozin, Nitrogen-doped p-type ZnO thin films and ZnO/ZnSe p-n heterojunctions grown on ZnSe substrate by radical beam gettering epitaxy, Thin Solid Films 517(15), 4318 (2009); https://doi.org/10.1016/j.tsf.2008.12.002.

Z. Meng, B. Zhu, Y. Zhang, L. Luo, Y. Zhang, Mechanical properties and biocompatibility of porous ZnO/hydroxyapatite composites with different porosities, Chinese Journal of Tissue Engineering Research 26(22), 2095 (2022); https://doi.org/10.12307/2022.277.

F. Zhao, J. Lin, Z. Lei, Z. Yi, F. Qin, J. Zhang, P. Wu, Realization of 18.97% theoretical efficiency of 0.9 μm thick c-Si/ZnO heterojunction ultrathin-film solar cells via surface plasmon resonance enhancement, Physical Chemistry Chemical Physics 24(8), 4871 (2022); https://doi.org/10.1039/D1CP05119A.

A. Shawky, S.M. Albukhari, Design of Ag3VO4/ZnO nanocrystals as visible-light-active photocatalyst for efficient and rapid oxidation of ciprofloxacin antibiotic waste, Journal of the Taiwan Institute of Chemical Engineers 133, 104268 (2022); https://doi.org/10.1016/j.jtice.2022.104268.

Y. Tang, P. Traveerungroj, H. L. Tan, P. Wang, R. Amal, Y. H. Ng, Scaffolding an ultrathin CdS layer on a ZnO nanorod array using pulsed electrodeposition for improved photocharge transport under visible light illumination, Journal of Materials Chemistry A 3(38), 19582 (2015); https://doi.org/10.1039/C5TA05195A.

T. K. Van, L. Q. Pham, D. Y. Kim, J. Y. Zheng, D. Kim, A. U. Pawar, Y. S. Kang, Formation of a CdO layer on CdS/ZnO nanorod arrays to enhance their photoelectrochemical performance, ChemSusChem 7(12), 3505 (2014); https://doi.org/10.1002/cssc.201402365.

M. Khan, M. H. Irfan, M. Israr, N. Rehman, T. J. Park, M. A. Basit, Comparative investigation of ZnO morphologies for optimal CdS quantum-dot deposition via pseudo-SILAR method, Chemical Physics Letters 744, 137223, (2020); https://doi.org/10.1016/j.cplett.2020.137223.

Y. Zhu, J. Chen, L. Shao, X. Xia, Y. Liu, L. Wang, Oriented facet heterojunctions on CdS nanowires with high photoactivity and photostability for water splitting, Applied Catalysis B: Environmental 268, 118744 (2020); https://doi.org/10.1016/j.apcatb.2020.118744.

J.A. Suchikova, V.V. Kidalov, G.A. Sukach, Preparation of nanoporous n-InP(100) layers by electrochemical etching in HCI solution, Functional Materials 17(1),131 (2010).

J.A. Suchikova, Synthesis of indium nitride epitaxial layers on a substrate of porous indium phosphide, Journal of Nano- and Electronic Physics 7(3), 03017 (2015).

Y. Suchikova, I. Bohdanov, S. Kovachov, A.M. Moskina, A.I. Popov, Texturing of indium phosphide for improving the characteristics of space solar cells. 2021 IEEE 12th International Conference on Electronics and Information Technologies, ELIT 2021 - Proceedings, 194 (2021); https://doi.org/10.1109/ELIT53502.2021.9501098.

Y.A. Suchikova, V.V. Kidalov, G.A. Sukach, Influence of dislocations on the process of pore formation in n-InP (111) single crystals, Semiconductors 45(1), 121 (2011), https://doi.org/10.1134/S1063782611010192.

E. Monaico, I. Tiginyanu, V. Ursaki, Porous semiconductor compounds, Semiconductor Science and Technology 35(10), 103001 (2020); https://doi.org/10.1088/1361-6641/ab9477.

J. Sabataityt, I. Šimkien, A. N. Baranov, R. A. Bendorius, V. Pačebutas, Porous A3B5 compounds, Materials Science and Engineering: C 23(1-2), 43 (2003), https://doi.org/10.1016/S0928-4931(02)00223-0.

Y.A. Suchikova, V.V. Kidalov, G.A. Sukach, Influence of type anion of electrolit on morphology porous InP obtained by electrochemical etching. Journal of Nano- and Electronic Physics 1(4), 78 (2009).

I. Bohdanov, Y. Suchikova, S. Kovachov, A. Usseinov, A.I. Popov, Nanostructure Formation on ZnSe Crystal Surface by Electrochemical Etching. Proceedings of the 2021 IEEE 11th International Conference "Nanomaterials: Applications and Properties", NAP 2021, (2021); https://doi.org/10.1109/NAP51885.2021.9568629.

F. Zenia, C. Levy-Clement, R. Triboulet, R. Könenkamp, K. Ernst, M. Saad, M. Lux-Steiner, Electrochemical texturization of ZnTe surfaces, Applied physics letters 75(4), 531 (1999); https://doi.org/10.1063/1.124438.

C. Florica, I. Arghir, L. Ion, I. Enculescu, V. A. Antohe, A. Radu, S. Antohe, Production and characterization of CdTe wire arrays for hybrid inorganic/organic photovoltaic cells, Digest Journal of Nanomaterials and Biostructures 6(1), 21 (2011).

M. F. Saleem, H. Zhang, Y. Deng, D. Wang, Resonant Raman scattering in nanocrystalline thin CdS film, Journal of Raman Spectroscopy 48(2), 224 (2017); https://doi.org/10.1002/jrs.5002.

R. R. Prabhu, M. Abdul Khadar, Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy, Bulletin of Materials Science 31(3), 511 (2008); https://doi.org/10.1007/s12034-008-0080-7.

S. V. Kahane, R. Sasikala, B. Vishwanadh, V. Sudarsan, S. Mahamuni, CdO–CdS nanocomposites with enhanced photocatalytic activity for hydrogen generation from water. International Journal of Hydrogen Energy 38(35), 15012 (2013); https://doi.org/10.1016/j.ijhydene.2013.09.077.

V. Srihari, V. Sridharan, T. R. Ravindran, S. Chandra, A. K. Arora, V. S. Sastry, C. S. Sundar, Raman scattering of cadmium oxide: in B1 phase. In AIP Conference Proceedings 1349(1), 845 (2011). https://doi.org/10.1063/1.3606122.

V. Ganesh, L. Haritha, H. E. Ali, A. M. Aboraia, Y. Khairy, H. H. Hegazy, I. S. Yahia, Detailed investigation of optical linearity and nonlinearity of nanostructured Ce-doped CdO thin films using Kramers–Kronig relations, Applied Physics A 126(7), 1 (2020); https://doi.org/10.1007/s00339-020-03727-8.

##submission.downloads##

Опубліковано

2022-06-30

Як цитувати

Сичікова, Я., Лазаренко, А., Ковачов, С., Бардус, І., & Богданов, І. (2022). Формування гетероструктур CdO/CdS/textured-ZnO/ZnO методом хімічного осадження. Фізика і хімія твердого тіла, 23(2), 361–367. https://doi.org/10.15330/pcss.23.2.361-367

Номер

Розділ

Фізико-математичні науки

Статті цього автора (авторів), які найбільше читають