Синтез та властивості силіцій карбіду (огляд)

Автор(и)

  • Л.М. Солтис Прикарпатський національний університет імені Василя Стефаника, Івано-Франківськ, Україна
  • І.Ф. Миронюк Прикарпатський національний університет імені Василя Стефаника, Івано-Франківськ, Україна
  • І.М. Микитин Прикарпатський національний університет імені Василя Стефаника, Івано-Франківськ, Україна
  • І.Д. Гнилиця Івано-Франківський національний технічний університет нафти і газу, Івано-Франківськ, Україна
  • Л.В. Туровська Івано-Франківський національний медичний університет, Івано-Франківськ, Україна

DOI:

https://doi.org/10.15330/pcss.24.1.5-16

Ключові слова:

силіцій карбід, політип, «зелений» синтез, керамічні наноматеріали

Анотація

Силіцій карбід надзвичайно твердий матеріал, який проявляє виняткову корозійну стійкість, а також стійкість до теплових ударів. Його високі механічні характеристики визначають підвищену роботоздатність матеріалів на його основі. Поєднання великої теплопровідності та низького коефіцієнта термічного розширення зумовлюють стійкість силіцій карбіду при великих швидкостях нагріву та в умовах стаціонарного теплового режиму. На сьогодні існує значний прогрес у розвитку методів синтезу різноманітних матеріалів на основі силіцій карбіду. Основними методами синтезу, які використовують науковці у своїх дослідженнях, є золь-гель метод, спікання, піроліз, мікрохвильовий синтез, хімічне осадження з парової фази тощо. Широкої популярності набуло використання «зелених» методик у синтезі SiC, через екологічність, відновлюваність та простоту виконання. У даному огляді зроблено аналіз сучасних досліджень у галузі синтезу силіцій карбіду, які опубліковані у рецензованих фахових виданнях.

Посилання

A.J. Ruys, I.G. Crouch, Siliconized Silicon Carbide (Elsevier Ltd., 2021); ISBN 9780081028698.

J. Lamon, Properties and Characteristics of SiC and SiC/SiC Composites, Compr. Nucl. Mater. Second Ed. 7, 400 (2020); https://doi.org/10.1016/B978-0-12-803581-8.11717-5.

L. Bracamonte, R. Loutfy, I.K. Yilmazcoban, S.D. Rajan, Design, Manufacture, and Analysis of Ceramic-Composite Armor (Elsevier Ltd, 2016); ISBN 9780081004258.

A. Tariq, A.; Shakir, M.F. Ceramic Composites (LTD, 2021); ISBN 9780128219843.

M.A.H. Mohd Sohor, M. Mustapha, J. Chandra Kurnia, Silicon Carbide – from Synthesis to Application: A Review, MATEC Web Conf., 131, 1 (2017); https://doi.org/10.1051/matecconf/201713104003.

S. Gryn, T. Nychyporuk, I. Bezverkhyy, D. Korytko, V. Iablokov, V. Lysenko, S. Alekseev, Mesoporous SiC with Potential Catalytic Application by Electrochemical Dissolution of Polycrystalline 3C-SiC, ACS Applied Nano Materials, 1(6), 2609 (2018); https://doi.org/10.1021/acsanm.8b00301.

Z. Wu, H. Zheng, G. Zhang, Y. Deng, Z. Meng, H.U. Wahab, Synthesis of Diameter-Fluctuating Silicon Carbide Nanowires for Excellent Microwave Absorption, Mater. Chem. Phys., 244, 122648 (2020); https://doi.org/10.1016/j.matchemphys.2020.122648.

Tsunenobu Kimoto, James A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications (John Wiley & Sons Singapore Pte. Ltd, Singapore, 2014); https://doi.org/10.1002/9781118313534.ch1.

R. Wu, K. Zhou, C.Y. Yue, J. Wei, Y. Pan, Recent Progress in Synthesis, Properties and Potential Applications of SiC Nanomaterials, Prog. Mater. Sci., 72, 1 (2015); https://doi.org/10.1016/j.pmatsci.2015.01.003.

Y. Wang, S. Dong, X. Li, C. Hong, X. Zhang, Synthesis, Properties, and Multifarious Applications of SiC Nanoparticles: A Review, Ceram. Int., 48(7), 8882 (2022); https://doi.org/10.1016/j.ceramint.2021.12.208.

J.E. House, Inorganic Chemistry (Elsevier, 2020); ISBN 9780128143698.

H.K. Henisch, R. Roy, Silicon Carbide–1968 (Elsevier, 1969); ISBN 9780080067681.

X. Ren, B. Ma, F. Qian, W. Yang, G. Liu, Y. Zhang, J. Yu, Q. Zhu, Green Synthesis of Porous SiC Ceramics Using Silicon Kerf Waste in Different Sintering Atmospheres and Pore Structure Optimization, Ceram. Int., 47(18), 26366 (2021); https://doi.org/10.1016/j.ceramint.2021.06.047.

E. Padovano, C. Badini, K. Mergia, J. Barcena, Thermophysical and Radiative Properties of Pressureless Sintered SiC and ZrB2-SiC Laminates, Ceramics International, 44 (13), 2018, 15050 (2018); https://doi.org/10.1016/j.ceramint.2018.05.135.

M. Liu, X. Yang, J. Guo, L. Zhang, Fabrication of SiC Foam Ceramics at a Low Sintering Temperature by Adding Fly Ash, Ceram. Int. 48(20), 30462 (2022); https://doi.org/10.1016/j.ceramint.2022.06.326.

J. Gu, S.H. Lee, V.H. Vu, J. Yang, H.S. Lee, J.S. Kim, Fast Fabrication of SiC Particulate-Reinforced SiC Composites by Modified PIP Process Using Spark Plasma Sintering – Effects of Green Density and Heating Rate, J. Eur. Ceram. Soc., 41(7), 4037 (2021); https://doi.org/10.1016/j.jeurceramsoc.2021.02.025.

D. Feng, Q. Ren, H. Ru, W. Wang, S. Ren, C. Zhang, Mechanical Properties and Microstructure Evolution of SiC Ceramics Prepared from the Purified Powders, Mater. Sci. Eng.: A, 802, 140443 (2021); https://doi.org/10.1016/j.msea.2020.140443.

R. Ma, J. Shi, W. Lin, J. Chen, Synthesis and Sintering of Nanocrystalline SiC Ceramic Powders, Mater. Chem. Phys., 253, 123445 (2020); https://doi.org/10.1016/j.matchemphys.2020.123445.

E. Eray, V. Boffa, M.K. Jørgensen, G. Magnacca, V.M. Candelario, Enhanced Fabrication of Silicon Carbide Membranes for Wastewater Treatment: From Laboratory to Industrial Scale, J. Memb. Sci., 606, 118080 (2020); https://doi.org/10.1016/j.memsci.2020.118080.

A.S. Mukasyan, Properties and Applications of Silicon Carbide (InTech Open, 2011); https://doi.org/10.5772/15620.

M. Xia, H. Guo, M.I. Hussain, Controllable Combustion Synthesis of SiC Nanowhiskers in a Si-C-N System: The Role of the Catalyst, Applied Sciences, 10(1), 252 (2019); https://doi.org/10.3390/app10010252.

Z. Han, H. Zhu, Y. Zou, J. Lu, F. Zhu, Q. Ning, Band Gap Regulation and a Selective Preparation Method for Single-Walled Silicon Carbide Nanotubes, Results Phys., 38, 105658 (2022); https://doi.org/10.1016/j.rinp.2022.105658.

F.W. Aldbea, S.A. Alameen, C.V. Vázquez, A. Sharma, M. Kraini, A.A. Ahmed, P.K. Singh, Structural Analysis of Silicon Carbide Prepared from Two Types of Carbon Sources, Mater. Today, Proc. 49, 3711 (2020); https://doi.org/10.1016/j.matpr.2021.10.119.

Z. Pan, C. Weng, M. Gao, W. Lin, L. Gao, H. Zhu, J. Chen, Syntheses and Photoluminescence Properties of SiC Nanowires with Different Colors, J. Alloys Compd., 842, 155768 (2020); https://doi.org/10.1016/j.jallcom.2020.155768.

M. Zeraati, K. Tahmasebi, A. Irannejad, Formation of SiC Nanocrystals Prepared by Sol-Gel Processing of Green Carbon Sources and DFT Calculations, J. Nanostructures, 10(3), 660 (2020); https://doi.org/10.22052/JNS.2020.03.019.

M. Zeraati, V. Alizadeh, G. Sargazi, H. Kazemian, Sol–Gel Synthesis of Silicon Carbide on Silicon Pyramids: A Promising Candidate for Supercapacitor Electrodes, J. Mater. Sci. Mater. Electron., 32(17), 22319 (2021); https://doi.org/10.1007/s10854-021-06718-4.

J. Xiao, L. Zhang, J. Yuan, Z. Yao, L. Tang, Z. Wang, Z. Zhang, Co-Utilization of Spent Pot-Lining and Coal Gangue by Hydrothermal Acid-Leaching Method to Prepare Silicon Carbide Powder, J. Clean. Prod., 204, 848 (2018); https://doi.org/10.1016/j.jclepro.2018.08.331.

Q. Wen, Z. Yu, R. Riedel, The Fate and Role of in Situ Formed Carbon in Polymer-Derived Ceramics, Progress in Materials Science, 109, 100623 (2020); https://doi.org/10.1016/j.pmatsci.2019.100623.

B. Santhosh, E. Ionescu, F. Andreolli, M. Biesuz, A. Reitz, B. Albert, G.D. Sorarù, Effect of Pyrolysis Temperature on the Microstructure and Thermal Conductivity of Polymer-Derived Monolithic and Porous SiC Ceramics, J. Eur. Ceram. Soc., 41(2), 1151 (2021); https://doi.org/10.1016/j.jeurceramsoc.2020.09.028.

Y. Wang, X. Pei, H. Li, X. Xu, L. He, Z. Huang, Q. Huang, Preparation of SiC Ceramic Fiber from a Photosensitive Polycarbosilane, Ceram. Int., 46(18), 28300 (2020); https://doi.org/10.1016/j.ceramint.2020.07.333.

C.M. Senger, K.F. Anschau, L. Baumann, A.L.H. Muller, P.A. Mello, E.I. Muller, Eco-Friendly Sample Preparation Method for Silicon Carbide Using Pyrohydrolysis for Subsequent Determination of Tungsten by ICP-MS, Microchem. J., 171, 106781 (2021); https://doi.org/10.1016/j.microc.2021.106781.

X. Li, W. Yang, J. Sang, J. Zhu, L. Fu, D. Li, L. Zhou, Low-Temperature Synthesizing SiC on Diamond Surface and Its Improving Effects on Thermal Conductivity and Stability of Diamond/Al Composites, J. Alloys Compd., 846, 156258 (2020); https://doi.org/10.1016/j.jallcom.2020.156258.

A. Gubernat, W. Pichór, R. Lach, D. Zientara, M. Sitarz, M. Springwald, Low-Temperature Synthesis of Silicon Carbide Powder Using Shungite, Boletin de la Sociedad Espanola de Ceramica y Vidrio, 56(1), 39 (2017); https://doi.org/10.1016/j.bsecv.2016.04.003.

F. Zhang, Y. Chen, S. Wei, Y. Si, H. Wang, R. Zhang, G. Wang, L. Song, B. Fan, Microwave Heating and Mechanism for Seed-Induced Synthesis of SiC, Mater. Today Commun., 31, 103846 (2022); https://doi.org/10.1016/j.mtcomm.2022.103846.

C.C. Lee, S.M. Kahar, C.H. Voon, Microwave Synthesis of Silicon Carbide Nanowhiskers: Effect of Molar Ratio, Mater. Today Proc., 37(2), 119 (2020); https://doi.org/10.1016/j.matpr.2020.04.571.

Q. Qin, J. Chen, M. Song, F. Cao, Y. Li, F. He, Z. Liu, G. Zhu, Q. Diao, Preparation of SiC Nanowires Based on Graphene as the Template by Microwave Sintering, J. Alloys Compd., 910, 164746 (2022); https://doi.org/10.1016/j.jallcom.2022.164746.

C.H. Voon, B.Y. Lim, S.C.B. Gopinath, H.S. Tan, V.C.S. Tony, M.K. Md Arshad, K.L. Foo, U. Hashim, Green Synthesis of Silicon Carbide Nanowhiskers by Microwave Heating of Blends of Palm Kernel Shell and Silica, IOP Conf. Ser. Mater. Sci. Eng., 160(1), 012057 (2016); https://doi.org/10.1088/1757-899X/160/1/012057.

M. Zhang, H. Ling, W. Zhang, H. Bian, H. Lin, T. Wang, Z. Li, A. Meng, Preparation, Superior Field Emission Properties and First Principles Calculation of Electronic Structure of SiC Nanowire Arrays on Si Substrate, Mater. Charact., 180, 111413 (2021); https://doi.org/10.1016/j.matchar.2021.111413.

S. Liu, X. Luo, B. Huang, P. Li, Y. Yang, Role of H2 and Ar as the Diluent Gas in Continuous Hot-Wire CVD Synthesis of SiC Fiber, J. Eur. Ceram., Soc. 42(7), 3135 (2022); https://doi.org/10.1016/j.jeurceramsoc.2022.02.038.

B. Zhumadilov, G. Suyundykova, G. Partizan, A. Kenzhegulov, B. Medyanova, B. Aliyev, Structure and Morphology of SiC Nanostructures Synthesized on Cu Films, Mater. Today Proc., 31, 417 (2019); https://doi.org/10.1016/j.matpr.2020.01.385.

A. Baux, A. Goillot, S. Jacques, C. Heisel, D. Rochais, L. Charpentier, P. David, T. Piquero, T. Chartier, G. Chollon, Synthesis and Properties of Macroporous SiC Ceramics Synthesized by 3D Printing and Chemical Vapor Infiltration/Deposition, J. Eur. Ceram. Soc., 40(8), 2834 (2020); https://doi.org/10.1016/j.jeurceramsoc.2020.03.001.

Q. Zhang, Z. Sun, X. Liu, J. Sun, R. Yu, X. Liu, Synthesis of SiC Nanowires by a Simple Chemical Vapour Deposition Route in the Presence of ZrB2, Ceram. Int,. 46(8), 12249 (2020); https://doi.org/10.1016/j.ceramint.2020.01.274.

H. Zhu, X. Li, Z. Dong, Y. Cong, G. Yuan, Z. Cui, In Situ Growth of Dense SiC Nanowires on Structural Defined Carbon Fibers without Sacrificing Flexibility, Ceram. Int., 46(16), 26017 (2020); https://doi.org/10.1016/j.ceramint.2020.07.094.

Z. Zhang, J. Tan, L. Cheng, W. Yang, In-Situ Growth of Silicon Carbide Nanofibers on Carbon Fabric as Robust Supercapacitor Electrode, Ceram. Int., 47(17), 24652 (2021); https://doi.org/10.1016/j.ceramint.2021.05.187.

J. Zhou, C. Wang, M. Song, X. Chen, W. Xia, Simple Synthesis of Ultrafine Amorphous Silicon Carbide Nanoparticles by Atmospheric Plasmas, Mater. Lett., 299, 130072 (2021); https://doi.org/10.1016/j.matlet.2021.130072.

C. Wang, J. Zhou, M. Song, X. Chen, Y. Zheng, C. Yang, W. Xia, W.; Xia, W., Fabrication of Ultra-Small SiC Nanoparticles with Adjustable Size, Stoichiometry and Photoluminescence by AC Multi-Arc Plasmas, Ceram. Int., 48(1), 632 (2022); https://doi.org/10.1016/j.ceramint.2021.09.142.

L. Soltys, O. Olkhovyy, T. Tatarchuk, M. Naushad, Green Synthesis of Metal and Metal Oxide Nanoparticles: Principles of Green Chemistry and Raw Materials, Magnetochemistry, 7(11), 145 (2021); https://doi.org/10.3390/magnetochemistry7110145.

J. Su, B. Gao, Z. Chen, J. Fu, W. An, X. Peng, X. Zhang, L. Wang, K. Huo, P.K. Chu, Large-Scale Synthesis and Mechanism of β-SiC Nanoparticles from Rice Husks by Low-Temperature Magnesiothermic Reduction, ACS Sustain. Chem. Eng., 4(12), 6600 (2016); https://doi.org/10.1021/acssuschemeng.6b01483.

J. Chen, Q. Kong, Z. Liu, Z. Bi, H. Jia, G. Song, L. Xie, S. Zhang, C.M. Chen, High Yield Silicon Carbide Whiskers from Rice Husk Ash and Graphene: Growth Method and Thermodynamics, ACS Sustain. Chem. Eng., 7(23), 19027 (2019); https://doi.org/10.1021/acssuschemeng.9b04728.

J.P. Chen, G. Song, Z. Liu, Q.Q. Kong, S.C. Zhang, C.M. Chen, Preparation of SiC Whiskers Using Graphene and Rice Husk Ash and Its Photocatalytic Property, J. Alloys Compd., 833, 155072 (2020); https://doi.org/10.1016/j.jallcom.2020.155072.

D.F. Hincapié-Rojas, A. Rosales-Rivera, P. Pineda-Gomez, Synthesis and Characterisation of Submicron Silica Particles from Rice Husk, Green Mater., 6(1), 15 (2018); https://doi.org/10.1680/jgrma.17.00019.

O. Haluska, A. Rahmani, A. Salami, P. Turhanen, J. Vepsäläinen, R. Lappalainen, V.P. Lehto, J. Riikonen, Plant-Based Nanostructured Silicon Carbide Modified with Bisphosphonates for Metal Adsorption, Microporous Mesoporous Mater., 324, 111294 (2021); https://doi.org/10.1016/j.micromeso.2021.111294.

A.N.R. Alfonso, J.R. Salazar, J.J. Monserate, M.M. Sarong, Potential for Photovoltaic Cell Material by Green Synthesis of Silicon Carbide from Corn Cob through Magnesiothermic Reduction, Int. J. Energy Prod. Manag., 5(1), 14 (2020); https://doi.org/10.2495/EQ-V5-N1-14-23.

J. Yang, J. Feng, W. Li, X. Chen, X. Liu, J. Ruan, R. Qiu, Y. Xiong, S. Tian, A Resource-Utilization Way of the Waste Printed Circuit Boards to Prepare Silicon Carbide Nanoparticles and Their Photocatalytic Application, J. Hazard. Mater., 373, 640 (2019); https://doi.org/10.1016/j.jhazmat.2019.03.115.

J. Zhou, B. Wei, Z. Yao, H. Lin, R. Tan, W. Chen, X. Guo, Preparation of Hollow SiC Spheres with Biological Template and Research on Its Wave Absorption Properties, J. Alloys Compd., 819, 153021 (2020); https://doi.org/10.1016/j.jallcom.2019.153021.

N.L. Zhang, J.F. Yang, Y.C. Deng, B. Wang, P. Yin, Preparation and Properties of Reaction Bonded Silicon Carbide (RB-SiC) Ceramics with High SiC Percentage by Two-Step Sintering Using Compound Carbon Sources, Ceram. Int., 45(12), 15715 (2019); https://doi.org/10.1016/j.ceramint.2019.04.224.

R. Tan, J. Zhou, Z. Yao, B. Wei, Z. Li, A Low-Cost Lightweight Microwave Absorber: Silicon Carbide Synthesized from Tissue, Ceram. Int., 47(2), 2077 (2021); https://doi.org/10.1016/j.ceramint.2020.09.040.

S. Kumari, R. Kumar, P.R. Agrawal, S. Prakash, D.P. Mondal, S.R. Dhakate, Fabrication of Lightweight and Porous Silicon Carbide Foams as Excellent Microwave Susceptor for Heat Generation, Mater. Chem. Phys., 253, 123211 (2020); https://doi.org/10.1016/j.matchemphys.2020.123211.

M. Raju, S. Sen, D. Sarkar, C. Jacob, Synthesis of 3C-Silicon Carbide 1D Structures by Carbothermal Reduction Process, J. Alloys Compd., 857, 158243 (2021); https://doi.org/10.1016/j.jallcom.2020.158243.

E.P. Shuaib, G.K. Yogesh, D. Sastikumar, Amorphous and Photoluminescent Crystalline Silicon Carbide Nanoparticles Synthesized by Laser Ablation in Liquids, Mater. Today Proc., 50, 2745 (2020); https://doi.org/10.1016/j.matpr.2020.08.453.

M.J. Langenderfer, Y. Zhou, J. Watts, W.G. Fahrenholtz, C.E. Johnson, Detonation Synthesis of Nanoscale Silicon Carbide from Elemental Silicon, Ceram. Int., 48(4), 4456 (2022); https://doi.org/10.1016/j.ceramint.2021.10.231.

M.J. Langenderfer, W.G. Fahrenholtz, S. Chertopalov, Y. Zhou, V.N. Mochalin, C.E. Johnson, Detonation Synthesis of Silicon Carbide Nanoparticles, Ceram. Int., 46(5), 6951 (2020); https://doi.org/10.1016/j.ceramint.2019.11.064.

Q. Jiang, J. Zhou, Y. Miao, S. Yang, M. Zhou, Z. Zhong, W. Xing, Lower-Temperature Preparation of SiC Ceramic Membrane Using Zeolite Residue as Sintering Aid for Oil-in-Water Separation, J. Memb. Sci,. 610, 118238 (2020); https://doi.org/10.1016/j.memsci.2020.118238.

L.M. Soltys, I.F. Mironyuk, T.R. Tatarchuk, V.I. Tsinurchyn, Zeolite-Based Composites as Slow Release Fertilizers (Review), Phys. Chem. Solid State, 21(1), 89 (2020); https://doi.org/10.15330/pcss.21.1.89-104.

M. Khodaei, O. Yaghobizadeh, H.R. Baharvandi, A.A. Shahraki, H Mohammadi, The Effect of Nano-TiO2 Additions on the Densification and Mechanical Properties of SiC-Matrix Composite, Ceram. Int,. 46(5), 6477 (2020); https://doi.org/10.1016/j.ceramint.2019.11.128.

I.F. Mironyuk, L.M. Soltys, T.R. Tatarchuk, V.I. Tsinurchyn, Ways to Improve the Efficiency of ТіО2-Based Photocatalysts (Review), Phys. Chem. Solid State, 21(2), 300 (2020); https://doi.org/10.15330/pcss.21.2.300-311.

I.F. Mironyuk, L.M. Soltys, T.R. Tatarchuk, K.O. Savka, Methods of Titanium Dioxide Synthesis (Review), Phys. Chem. Solid State, 21(3), 462 (2020); https://doi.org/10.15330/pcss.21.3.462-477.

J. Zhang, S. Yan, Q. Jia, J. Huang, L. Lin, S. Zhang, Preparation of SiC/SiO2 Core-Shell Nanowires via Molten Salt Mediated Carbothermal Reduction Route, Phys. E Low-Dimensional Syst. Nanostructures, 80, 19 (2016); https://doi.org/10.1016/j.physe.2016.01.002.

I.F. Myronyuk, V.O. Kotsyubynsky, T.V. Dmytrotsa, L.M. Soltys, V.M. Gun’ko, Atomic Structure and Morphology of Fumed Silica, Phys. Chem. Solid State, 21(2), 325 (2020); https://doi.org/10.15330/pcss.21.2.325-331.

X. Chen, Y. Qin, Q. Jia, Q. Zhang, Y. Zhou, X. Liu, Synthesis of Blue-Green Photoluminescent β-SiC Nanowires via a Simple Catalyst-Free CVD Technique, Mater. Lett., 234, 187 (2019); https://doi.org/10.1016/j.matlet.2018.09.101.

N. Murakawa, M. Eguchi, K. Tatsumi, Synthesis of SiC Coating from SiO by a Chemical Vapor Deposition (CVD) Process, Journal of the Ceramic Society of Japan, 125(3), 85 (2017); https://doi.org/10.2109/jcersj2.16203.

##submission.downloads##

Опубліковано

2023-02-23

Як цитувати

Солтис, Л., Миронюк, І., Микитин, І., Гнилиця, І., & Туровська, Л. (2023). Синтез та властивості силіцій карбіду (огляд). Фізика і хімія твердого тіла, 24(1), 5–16. https://doi.org/10.15330/pcss.24.1.5-16

Номер

Розділ

Огляд

Статті цього автора (авторів), які найбільше читають

1 2 3 > >>