Варіювання фотолюмінесценції квантових точок CdTe шляхом контрольованої взаємодії з плазмонними наночастинками Au

Автор(и)

  • В. Джаган Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України, Київ, Україна; Київський національний університет імені Тараса Шевченка, Київ, Україна
  • О. Капуш Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України, Київ, Україна
  • О. Ісаєва Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, Київ, Україна
  • С. Будзуляк Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, Київ, Україна
  • О. Магда Київський національний університет імені Вадима Гетьмана, Київ, Україна
  • П. Когутюк Київський національний університет імені Тараса Шевченка, Київ, Україна
  • Л. Тріщук Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, Київ, Україна
  • В. Єфанов Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, Київ, Україна
  • М. Валах Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, Київ, Україна
  • В. Юхимчук Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, Київ, Україна

DOI:

https://doi.org/10.15330/pcss.23.4.720-727

Ключові слова:

квантова точка, напівпровідниковий нанокристал, CdTe, фотолюмінесценція, LSPR, наночастинки Au

Анотація

Контрольована зміна інтенсивності фотолюмінесценції (ФЛ) напівпровідникових квантових точок (КТ) зумовлена їх взаємодією з плазмонними наночастинками (НЧ) є основою для потенційних оптоелектронних і сенсорних застосувань. У даній роботі досліджено вплив НЧ Au на ФЛ колоїдних КТ CdTe в розчинах і плівках. Підсилення ФЛ КТ, синтезованих у воді, спостерігаєся у випадку спектрального перекриття смуги поглинання плазмону та смуги ФЛ КТ. У випадку НЧ Au синтезованих у диметилсульфоксилі, спостерігається тенденція до зниження інтенсивності ФЛ. Для еталонних зразків, отриманих шляхом змішування КТ не з розчинами НЧ Au, а з відповідним чистим розчинником, спостерігалося певне посилення ФЛ, яке, імовірно, пояснюється зменшенням самопоглинання або невипромінювальної взаємодії між КТ в менш концентрованому їх розчині. Однак внесок концентраційного вкладу в підсилення не повиненн залежати від спектральних властивостей НЧ і КТ. Таким чином, спостережувана в цій роботі різна поведінка ФЛ КТ у певних комбінаціях КТ і НЧ пояснюється взаємодією між електронним збудженням у КТ і плазмоном.

Біографія автора

Л. Тріщук, Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, Київ, Україна

PhD, senior researcher

Посилання

D. Bera, L. Qian, T. Tseng, and P. H. Holloway, Quantum Dots and Their Multimodal Applications: A Review, Materials (Basel), 3, 2260 (2010); https://doi.org/10.3390/ma3042260.

P. Reiss, E. Couderc, J. De Girolamo, and A. Pron, Conjugated Polymers/Semiconductor Nanocrystals Hybrid Materials - Preparation, Electrical Transport Properties and Applications, Nanoscale, 3, 446 (2011); https://doi.org/10.1039/c0nr00403k.

M. Anni, Polymer-II-VI Nanocrystals Blends : Basic Physics and Device Applications to Lasers and LEDs, Nanomaterials, 9, 1036 (2019); https://doi.org/10.3390/nano9071036.

Y. Park, B. T. Diroll, R. D. Schaller, and V. I. Klimov, Colloidal Quantum Dot Lasers, Nat. Rev. Mater., 6, 382 (2021); https://doi.org/10.1038/s41578-020-00274-9.

S. Pillai and M. A. Green, Plasmonics for Photovoltaic Applications, Sol. Energy Mater. Sol. Cells, 94, 1481 (2010); https://doi.org/10.1016/j.solmat.2010.02.046.

A. Muravitskaya, A. Rumyantseva, S. Kostcheev, V. Dzhagan, O. Stroyuk, and P.-M. Adam, Enhanced Raman Scattering of ZnO Nanocrystals in the Vicinity of Gold and Silver Nanostructured Surfaces, Opt. Express, 24, A168 (2016); https://doi.org/10.1364/OE.24.00A168.

O. A. Yeshchenko, S. V. Kondratenko, and V. V. Kozachenko, Surface Plasmon Enhanced Photoluminescence from Fullerene C 60 Film on Au Nanoparticles Array : Resonant Dependence on Excitation Frequency, J. Appl. Phys., 111, 124327 (2014); https://doi.org/10.1063/1.4731228.

A. M. Flatae, F. Tantussi, G. C. Messina, F. De Angelis, and M. Agio, Plasmon-Assisted Suppression of Surface Trap States and Enhanced Band-Edge Emission in a Bare CdTe Quantum Dot, J. Phys. Chem. Lett., 10, 2874 (2019); https://doi.org/10.1021/acs.jpclett.9b01083.

H. Wang, L. Xu, Y. Wu, J. Xu, Z. Ma, and K. Chen, Plasmon Resonance-Induced Photoluminescence Enhancement of CdTe/Cds Quantum Dots Thin Films, Appl. Surf. Sci., 387, 1281 (2016); https://doi.org/10.1016/j.apsusc.2016.06.092.

O. A. Yeshchenko, P. S. Khort, N. V. Kutsevol, V. M. Prokopets, O. Kapush, and V. Dzhagan, Temperature Driven Plasmon-Exciton Coupling in Thermoresponsive Dextran-Graft-PNIPAM/Au Nanoparticle/CdTe Quantum Dots Hybrid Nanosystem, Plasmonics, 16, 1137 (2021); https://doi.org/10.1007/s11468-021-01378-w.

A. Inoue, H. Sugimoto, and M. Fujii, Photoluminescence Enhancement of Silicon Quantum Dot Monolayer by Double Resonance Plasmonic Substrate, J. Phys. Chem. C, 121, 11609 (2017); https://doi.org/10.1021/acs.jpcc.7b00717.

V. I. Chegel, A. M. Lopatynskyi, V. K. Lytvyn, P. V Demydov, J. P. Mart, and R. Abargues, Sensors Localized Surface Plasmon Resonance Nanochips with Molecularly Imprinted Polymer Coating for Explosives Sensing, Semicond. Physics, Quantum Electron. Optoelectron, 23, 431 (2020); https://doi.org/10.15407/spqeo23.04.431.

I. Dmitruk, I. Blonskiy, I. Pavlov, O. Yeshchenko, A. Alexeenko, A. Dmytruk, P. Korenyuk, and V. Kadan, Surface Plasmon as a Probe of Local Field Enhancement, Plasmonics, 4, 115 (2009); https://doi.org/10.1007/s11468-009-9081-7.

M. Lunz, V. A. Gerard, Y. K. Gun, V. Lesnyak, N. Gaponik, A. S. Susha, A. L. Rogach, and A. L. Bradley, Surface Plasmon Enhanced Energy Transfer between Donor and Acceptor CdTe Nanocrystal Quantum Dot Monolayers, Nano Lett., 3341 (2011); https://doi.org/10.1021/nl201714y.

G. I. Dovbeshko, O. M. Fesenko, Y. M. Shirshov, and V. I. Chegel, The Enhancement of Optical Processes near Rough Surface of Metals, Semicond. Physics, Quantum Electron. Optoelectron., 7, 411 (2004); https://doi.org/10.15407/spqeo7.04.411.

O. A. Yeshchenko et al., Laser-Induced Periodic Ag Surface Structure with Au Nanorods Plasmonic Nanocavity Metasurface for Strong Enhancement of Adenosine Nucleotide Label-Free Photoluminescence Imaging, ACS Omega, 5, 14030 (2020); https://doi.org/10.1021/acsomega.0c01433.

O. S. Kulakovich, D. V. Korbutyak, S. M. Kalytchuk, S. I. Budzulyak, O. A. Kapush, L. I. Trishchuk, S. V. Vaschenko, V. Stankevich, and A. Ramanenka, Influence of Conditions for Synthesis of CdTe Nanocrystals on Their Photoluminescence Properties and Plasmon Effects, J. Appl. Spectrosc., 79, 774 (2012); https://doi.org/10.1007/s10812-012-9668-1.

V. B. Llorente, V. M. Dzhagan, N. Gaponik, R. A. Iglesias, D. R. T. Zahn, and V. Lesnyak, Electrochemical Tuning of Localized Surface Plasmon Resonance in Copper Chalcogenide Nanocrystals, J. Phys. Chem., C 121, 18244 (2017); https://doi.org/10.1021/acs.jpcc.7b05334.

M. Moradi, A. Vaskin, I. Staude, J. Michael, J. Elbert, and U. S. Schubert, Photoluminescence Switching of CdSe/ZnS Quantum Dots Toward Sensing Applications Triggered by Thermoresponsive Poly (N ‑ Isopropylacrylamide) Films on Plasmonic Gold Surfaces, ACS Appl. Nano Mater., 4, 2386−2394 (2021); https://doi.org/10.1021/acsanm.0c02476.

J. Zhang, R. Badugu, and J. R. Lakowicz, Fluorescence Quenching of CdTe Nanocrystals by Bound Gold Nanoparticles in Aqueous Solution, Plasmonics, 3, 3 (2008); https://doi.org/10.1007/s11468-007-9047-6.

S. F. Wuister, F. Van Driel, and A. Meijerink, Luminescence of CdTe Nanocrystals, J. Lumin., 102–103, 327 (2003); https://doi.org/10.1016/S0022-2313(02)00520-3.

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmuller, Y. P. Rakovich, and J. F. Donegan, Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals: State-of-the-Art, J. Phys. Chem. C, 111, 14628 (2007); https://doi.org/10.1021/jp072463y.

O. A. Kapush, S. D. Boruk, O. S. Boruk, S. I. Budzulyak, B. N. Kulchytsky, O. G. Kosinov, and L. I. Trishchuk, Effect of the Nature of Dispersion Medium on the CdTe / TGA Nanocrystal Formation in Colloidal Solutions and Polymeric Membranes, Semicond. Phys. Quantum Electron. Optoelectron., 23, 160 (2020); https://doi.org/10.15407/spqeo23.02.160.

O. Kapush, S. I. Budzulyak, D. V. Korbutyak, N. D. Vakhnyak, S. D. Boruk, V. M. Dzhagan, A. I. Yemets, and M. Y. Valakh, Influence of the Dispersion Medium on the Properties of CdTe Micro- and Nanocrystals in a Colloidal Solution, Funct. Mater., 26, 27 (2019); https://doi.org/10.15407/fm26.01.27.

M. V Kovalenko and O. L. Stroyuk, Spectral, Optical, and Photocatalytic Characteristics of Quantum-Sized Particles of CdTe, Theor. Exp. Chem., 40, 220 (2004); https://doi.org/10.1023/B.

O. A. Kapush, L. I. Trishchuk, V. N. Tomashik, and Z. F. Tomashik, Effect of Thioglycolic Acid on the Stability and Photoluminescence Properties of Colloidal Solutions of CdTe Nanocrystals, Inorg. Mater., 50, 13 (2014); https://doi.org/10.1134/S0020168514010105.

J. Turkevich, P. C. Stevenson, and J. Hillier, A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold, Discuss. Faraday Soc., 11, 55 (1951); https://doi.org/10.1039/DF9511100055.

V. Dzhagan, O. Kapush, S. Plokhovska, A. Buziashvili, Y. Pirko, O. Yeshchenko, V. Yukhymchuk, A. Yemets, and D. R. T. Zahn, Plasmonic Colloidal Au Nanoparticles in DMSO : A Facile Synthesis and Characterisation, RSC Adv., 12, 21591 (2022); https://doi.org/10.1039/D2RA03605C.

N. Gaponik, D. V Talapin, A. L. Rogach, K. Hoppe, E. V Shevchenko, A. Kornowski, A. Eychmu, and H. Weller, Thiol-Capping of CdTe Nanocrystals : An Alternative to Organometallic Synthetic Routes, J. Phys. Chem. B, 106, 7177 (2002); . https://doi.org/10.1021/jp025541k

O. Stroyuk, A. Raevskaya, N. Gaponik, O. Selyshchev, V. Dzhagan, S. Schulze, and D. R. T. Zahn, Origin of the Broadband Photoluminescence of Pristine and Cu+/Ag+-Doped Ultrasmall CdS and CdSe/CdS Quantum Dots, J. Phys. Chem. C, 122, 10267 (2018); https://doi.org/10.1021/acs.jpcc.8b02337.

C. Meerbach et al., Brightly Luminescent Core / Shell Nanoplatelets with Continuously Tunable Optical Properties, Adv. Opt. Mater., 1801478 (2019); https://doi.org/10.1002/adom.201801478.

A. E. Raevskaya, A. L. Stroyuk, S. Y. Kuchmiy, V. M. Dzhagan, M. Y. Valakh, and D. R. T. Zahn, Optical Study of CdS- and ZnS-Passivated CdSe Nanocrystals in Gelatin Films, J. Phys. Condens. Matter, 19, 386237 (2007); https://doi.org/10.1088/0953-8984/19/38/386237.

Q. Wen, S. V. Kershaw, S. Kalytchuk, O. Zhovtiuk, C. Reckmeier, M. I. Vasilevskiy, and A. L. Rogach, Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects, ACS Nano, 10, 4301 (2016); https://doi.org/10.1021/acsnano.5b07852.

S. A. Fischer, A. M. Crotty, S. V. Kilina, S. A. Ivanov, and S. Tretiak, Passivating Ligand and Solvent Contributions to the Electronic Properties of Semiconductor Nanocrystals, Nanoscale, 4, 904 (2012); https://doi.org/10.1039/c2nr11398h.

S. S. Lo, Y. Khan, M. Jones, and G. D. Scholes, Temperature and Solvent Dependence of CdSe/CdTe Heterostructure Nanorod Spectra, J. Chem. Phys., 131, 1 (2009); https://doi.org/10.1063/1.3212693.

S. Trotzky, J. Kolny-Olesiak, S. M. Falke, T. Hoyer, C. Lienau, W. Tuszynski, and J. Parisi, Ligand Removal from Soluble CdTe Nanocrystals Evidenced by Time-Resolved Photoluminescence Spectroscopy, J. Phys. D. Appl. Phys., 41, 102004 (2008); https://doi.org/10.1088/0022-3727/41/10/102004.

M. Toma, O. Selyshchev, Y. Havryliuk, A. Pop, and D. R. T. Zahn, Optical and Structural Characteristics of Rare-Earth-Doped ZnO Nanocrystals Prepared in Colloidal Solution, Photochem, 2, 515 (2022); https://doi.org/10.3390/photochem2030036.

B. J. Kumar and H. M. Mahesh, Concentration-Dependent Optical Properties of TGA Stabilized CdTe Quantum Dots Synthesized via the Single Injection Hydrothermal Method in the Ambient Environment, Superlattices Microstruct., 104, 118 (2017); https://doi.org/10.1016/j.spmi.2017.02.023.

R. Schneider, F. Weigert, V. Lesnyak, S. Leubner, T. Lorenz, and T. Behnke, PH and Concentration Dependence of the Optical Properties of Thiol-Capped CdTe Nanocrystals in Water and D2O, Phys.Chem.Chem.Phys., 18, 19083 (2016); https://doi.org/10.1039/c6cp03123d.

Y. Luo, Y. Hong, L. Shen, F. Wu, and X. Lin, Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations, AAPS PharmSciTech, 22, 34 (2021); https://doi.org/10.1208/s12249-020-01909-4.

K. Koczkur, S. Mourdikoudis, L. Polavarapu, S. Skrabalak, Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis, Dalt. Trans., 44, 17883 (2015); https://doi.org/10.1039/c5dt02964c.

G. Rudko, A. Kovalchuk, V. Fediv, Q. Ren, W. Chen, I. A. Buyanova, and G. Pozina, Role of the Host Polymer Matrix in Light Emission Processes in Nano-CdS/Poly Vinyl Alcohol Composite, Thin Solid Films, 543, 11 (2013); https://doi.org/10.1016/j.tsf.2013.04.035.

E. Witt, F. Witt, N. Trautwein, and D. Fenske, Synthesis of Lead Chalcogenide Nanocrystals and Study of Charge Transfer in Blends of PbSe Nanocrystals and Poly ( 3-Hexylthiophene), Phys. Chem. Chem. Phys., 14, 11706 (2012); https://doi.org/10.1039/c2cp41584d.

L. Borkovska, N. Korsunska, T. Stara, O. Gudymenko, Y. Venger, O. Stroyuk, O. Raevska, and T. Kryshtab, Enhancement of the Photoluminescence in CdSe Quantum Dot-Polyvinyl Alcohol Composite by Light Irradiation, Appl. Surf. Sci., 281, 118 (2013); https://doi.org/10.1016/j.apsusc.2012.12.146.

V. Dzhagan, O. Stroyuk, O. Raievska, O. Isaieva, O. Kapush, O. Selyshchev, V. Yukhymchuk, and M. Valakh, Photoinduced Enhancement of Photoluminescence of Colloidal II-VI Nanocrystals in Polymer Matrices, Nanomaterials, 10, 2565 (2020); https://doi.org/10.3390/nano10122565.

##submission.downloads##

Опубліковано

2022-12-19

Як цитувати

Джаган, В., Капуш, О., Ісаєва, О., Будзуляк, С., Магда, О., Когутюк, П., … Юхимчук, В. (2022). Варіювання фотолюмінесценції квантових точок CdTe шляхом контрольованої взаємодії з плазмонними наночастинками Au. Фізика і хімія твердого тіла, 23(4), 720–727. https://doi.org/10.15330/pcss.23.4.720-727

Номер

Розділ

Фізико-математичні науки

Статті цього автора (авторів), які найбільше читають