$(p,\theta ,q,\eta)$-Ядерні відображення Блоха
https://doi.org/10.15330/cmp.17.2.386-405
Ключові слова:
оператор сумування, векторнозначне відображення Блоха, компактне відображення Блоха, домінування Пітча, факторизація КвапєняАнотація
У цій статті використано нові результати теорії ідеалів відображень Блоха для введення та аналізу властивостей $(p,\theta,q,\eta)$-ядерних відображень Блоха з відкритого одиничного диска $\mathbb{D}$ у комплексний банахів простір $X$, де $1 \leq p,q < \infty$ та $0 \leq \theta, \eta < 1$ задовольняють умову $\left( 1-\theta \right) /p + \left( 1-\eta \right) /q = 1$. Основну увагу приділено означенню цих відображень, встановленню їхніх властивостей як банахових просторів і дослідженню фундаментальних характеристик, таких як домінування Пітча, компактність Блоха та інваріантність Мебіуса. Наприкінці статті представлено відповідну крос-норму Блоха та проілюстровано ізометричний ізоморфізм між визначеним простором і його спряженим простором.