A characterization of F-spaces containing an isomorph of $\ell_0$

Authors

  • O. Fotiy Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynskyi str., 58012, Chernivtsi, Ukraine
  • M. Popov Institute of Exact and Technical Sciences, Pomeranian University in Slupsk, 22d Arciszewskiego str., 76-200, Slupsk, Poland
  • O. Ukrainets Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynskyi str., 58012, Chernivtsi, Ukraine https://orcid.org/0009-0008-9793-0330
https://doi.org/10.15330/cmp.17.1.146-151

Keywords:

F-space, vector lattice, F-lattice, orthogonally additive operator
Published online: 2025-06-05

Abstract

We prove that an F-space $X$ contains an isomorph of $\ell_0$ if and only if there exists a continuous at zero function $T \colon L_0 \to X$ with $T0 = 0$ possessing the following two properties.

(1) $(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in L_0) (\forall a > 0) (\exists b > 0) \,\bigl( \|a Tx \| \ge \varepsilon \, \Rightarrow \, \|T(bx) \| \ge \delta \bigr)$, which is a weak version of the positive homogeneity.

(2) For every $x,y,z \in L_0$ with $Tx \neq 0$, if $x$ is a disjoint sum of $y$ and $z$, then either $Ty \neq 0$ or $Tz \neq 0$.

We also provide examples showing that all assumptions on $T$ are essential.

Article metrics
How to Cite
(1)
Fotiy, O.; Popov, M.; Ukrainets, O. A Characterization of F-Spaces Containing an Isomorph of $\ell_0$. Carpathian Math. Publ. 2025, 17, 146-151.