Kolmogorov-type inequalities in semilinear metric spaces

Authors

  • V. Babenko Oles Honchar Dnipro National University, 72 Gagarin avenue, 49010, Dnipro, Ukraine https://orcid.org/0000-0001-6677-1914
  • V. Kolesnyk Drake University, 2507 University avenue, Des Moines, USA
  • O. Kovalenko Oles Honchar Dnipro National University, 72 Gagarin avenue, 49010, Dnipro, Ukraine https://orcid.org/0000-0002-0446-1125
  • N. Parfinovych Oles Honchar Dnipro National University, 72 Gagarin avenue, 49010, Dnipro, Ukraine
https://doi.org/10.15330/cmp.17.2.579-590

Keywords:

Kolmgorov-type inequality, inequality for derivatives, semilinear metric space, modulus of continuity, fractional derivative
Published online: 2025-12-19

Abstract

For functions that take values in an isotropic semilinear metric space we prove two sharp Kolmogorov-type inequalities. In the first one we obtain an estimate for the uniform norm of the derivative (in the Rådström sense) of a function using the uniform norm of the function and the $H^\omega$-norm of the function's derivative; here $\omega$ is an arbitrary modulus of continuity. The second one gives an estimate of the uniform norm of a generalized fractional derivative of a function via its uniform norm and its $H^\omega$-norm.

Article metrics
How to Cite
(1)
Babenko, V.; Kolesnyk, V.; Kovalenko, O.; Parfinovych, N. Kolmogorov-Type Inequalities in Semilinear Metric Spaces. Carpathian Math. Publ. 2025, 17, 579-590.