Morphology, phase composition and radiological properties of fly ash obtained from the Burshtyn thermal power plant

  • I.F. Mironyuk Vasyl Stefanyk Precarpathian National University
  • T.R. Tatarchuk Vasyl Stefanyk Precarpathian National University
  • H.V. Vasylyeva Uzhgorod National University
  • I.P. Yaremiy Vasyl Stefanyk Precarpathian National University
  • I.M. Mykytyn Vasyl Stefanyk Precarpathian National University
Keywords: fly ash, glass microspheres, mullite, quartz, radiology

Abstract

The physic-chemical properties of ash extracted from smoke during the combustion of coal at the Burshtyn thermal power plant were investigated. The particles formed in the flame are crystallized glass beads with a size of 0.8–600 μm. It was found that the ash particles are heterogeneous in their chemical composition. The mass content of the ferric oxides can vary from 2.1% to 96.4%, however, despite this, the Al2O3/SiO2 ratio in the glass balls remains constant at a value of 0.47±0.02. Phase analysis confirmed the presence of α-quartz particles (~ 62 wt%), mullite (~ 32 wt%) and α-FeOOH, α-Fe2O3 and Fe3O4 mixtures (totaling 6 wt%). Radiological studies have revealed higher β- and γ-activity of fly ash, selected from the dump, compared with the fly ash from the electro-filter. This is due to the accumulation of 214Pb and 214Bi radionuclides particles formed on the surface of the particles due to due to decay of 222Rn.

References

[1] V.V. Zyiryanov, D.V. Zyiryanov, Zola-unosa – tehnogennoe syire (NNTs «Maska», Moskva, 2009).
[2] A.V. Stepanov, Dostizheniya energetiki i zaschita okruzhayuschey sredyi (Naukova dumka, Kiev, 2004).
[3] N.S. Timoschuk, I.S. Bobyik, Primenenie zolyi i shlaka Burshtyinskoy GRES v zhelezobetonnyih izdeliyah dlya dorozhnogo stroitelstva (Mir, Moskva, 1991).
[4] E.I. Putilin, V.S. Tsvetkov, Obzornaya informatsiya otechestvennogo i zarubezhnogo opyita primeneniya othodov ot tverdogo topliva na TES (SoyuzDorNII, Moskva, 2003).
[5] Z.B. Entin, L.S. Nefedova, N.V. Strzhalkovskaya, Tsement i ego primenennie, 2, 40 (2012).
[6] E.E. Berry, V.M. Molhotra, ACIJ, 2(3), 59 (1982).
[7] Z.T. Yao, X.S. Ji, P.K. Sarker et al, Earth-Science Reviews, 141, 105 (2015).
[8] A.G. Malchik, S.V. Litovkin, Mezhdunarodnyiy zhurnal prikladnyih i fundamentalnyih isledovaniy 9, 23(2005).
[9] T.S. Rushad, A. Kumar, S.K. Dugga et al. International Jornal of Civil and Structural Engineering 1(4) 2011.
[10] P.Villars, K.Cenzual, R.Gladyshevskii, Handbook of Inorganic Substances. (Boston: De Gruyter, Berlin, 2014).
[11] I.F.Mironyuk, V.L.Chelyadin, R.R.Yakubovskiy, V.O.Kotsyubinskiy, Fіzika I hіmіya tverdogo tіla, 11(2), 409 (2010).
[12] T.Tatarchuk, M.Bououdina, Judith J.Vijaya, J. Kennedy. In: Fesenko O., Yatsenko L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications. NANO 2016. Springer Proceedings in Physics, Springer, 195, 305 (2017), https://doi.org/10.1007/978-3-319-56422-7_22
[13] A.I.Efimov, L.P.Belorukova, I.V.Vasil'kova, V.P.CHechev, Svojstva neorganicheskih soedinenij. Spravochnik. (Himiya, Leningrad, 1983).
[14] W. Holand, G.H. Beall. Glass‐Ceramic Technology. Second edition (American Ceramic Society, 2012).
[15] A.P. Legrand, The Surface Properties of Silicas (Wiley, New York, 1998).
[16] H. F. Chen, G. D. Wei, X. Han et al. Journal of Materials Science: Materials in Electronics 22, 252 (2011).
[17] І.F. Myronyuk, V.I. Mandzyuk, V.M. Sachko, V.M. Gun’ko, Nanoscalle Research Letters 11 (508), 1(2016).
[18] L.YA. Kizil'shtejn, Himiya i zhizn', 2, 24(2006).
[19] R.A. Zielinski. Radioactive Elements in Coal and Fly Ash: Abundance, Forms, and Environmental Significance (U.S. Geological Survey, 1997).
[20] V.E. Guiseppe, S.R. Elliott, A. Hime, K. Rielage, S. Westerdale. AIP Conference Proceedings 1338, 95 (2011).
[21] J. Argyriades, R. Arnold, C. Augier et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 606 (3), 449 (2009)
[22] E. De la Cruz, R. Gonzalez et al. Rev. Int. Cont. Ambient 27(3), 2011.
[23] Normi radіacіjnoї bezpeki Ukraїni (NRBU-97) (Kiїv, 1997).
Published
2019-05-03
How to Cite
[1]
MironyukI., TatarchukT., VasylyevaH., YaremiyI. and MykytynI. 2019. Morphology, phase composition and radiological properties of fly ash obtained from the Burshtyn thermal power plant. Physics and Chemistry of Solid State. 19, 2 (May 2019), 171-178. DOI:https://doi.org/10.15330/pcss.19.2.171-178.
Section
Review