Promising Cathode Material for Supercapacitors LaFe0.5Cr0.5O3 Perovskite Nanoparticles

  • I.P. Yaremiy Vasyl Stefanyk Precarpathian National University
  • M.L. Mokhnatskyi Vasyl Stefanyk Precarpathian National University
  • P.I. Kolkovskyi Vasyl Stefanyk Precarpathian National University
  • L.V. Mokhnatska Vasyl Stefanyk Precarpathian National University
  • S.I. Yaremiy Ivano-Frankivsk National Medical University
  • A.I. Kachmar Vasyl Stefanyk Precarpathian National University
  • Kh.P. Cherkach Vasyl Stefanyk Precarpathian National University
Keywords: sol-gel method, perovskite structure, supercapacitor, impedance, spectroscopy, specific capacity


In this work, the Perovskite powders LaFe0.5Cr0.5O3 with a space group of P m - 3 m was obtained by the sol-gel method. The nanoscale powders of LaFe0.5Cr0.5O3 have been tested as a cathode material for electrochemical supercapacitors. The CVA and charge-discharge curves were obtained at 0.5 mV/s to 16 mV/s and 0.5 mA/s to 16 mA/s scan rates accordingly. It is established that the cathode material LaFe0.5Cr0.5O3 demonstrates the specific capacity up to 16 F/g at a discharge scan rate 0.5 mV/s. Additionally, the maximum of the specific capacity was calculated and it is determined that C is 29.26 F/g, and the specific capacity of double electric layer CDEL is 3.44 F/g. It was determined that the contribution of the redox reactions in specific capacity is 88 %. The Nyquist plots and Mott-Schottky plots for LaFe0.5Cr0.5O3 were obtained. They consist of two parts that correspond to a different type of conductivity. Thus, it is established that LaFe0.5Cr0.5O3 shows different types of conductivity depending on the applied potential. The received values of flat band potential are -1.00 V and 0.16 V for n-type and p-type of conductivity accordingly.


H. Schranger, F. Barzegar, Q. Abbas. Current Opinion in Electrochemistry 21, 167 (2020) (

R. Lisovsky, B. Ostafiychuk, I. Budzulyak, V. Kotsyubynsky, A. Boychuk, B. Rachiy, Acta Physica Polonica A 133(4), 876 (2018) (

S. Hussain, M.S. Javed, N. Ullah, A. Shaheen, N. Aslam, I. Ashraf, Y. Abbas, M. Wang, G. Liu, and G. Qiao, Ceramics International 45(12), 15164 (2019).

N. Arjun, G.-T. Pan, T.Yang Results in Physics 7, 920 (2017) (

M. Coskun, O. Polat, F. Coskun and al. Journal of Alloys and Compounds 740, 1012 (2018) (

S. Hui, X. Jiayue, and W. Anhua, Journal of Rare earths 28(3), 416 (2010) (

S.M. Khetre, H.V. Jadhav, and S.R. Bamane, Rasayan Journal Chemistry 3(1), 82 (2010) ()

F. Deganello, G. Marcì, and G. Deganello, Journal of the European Ceramic Society 29(3), 439 (2009) (

A. V. Kopaev, V. V. Mokljak, I. M. Gasyuk, I. P. Yaremiy, V. V. Kozub, Solid State Phenomena 230, 114 (2015). (

I. Yaremiy, S. Yaremiy, V. Fedoriv, O. Vlasii, A. Luсas, Eastern-European Journal of Enterprise Technologies. 5(5 (95)), 61 (2018) (

B.K. Ostafiychuk, H.M. Kolkovska, I.P. Yaremiy, B.I. Rachiy, P.I. Kolkovskyi, N.Y. Ivanichok, and S.I. Yaremiy, Physics and Chemistry of Solid State 21(2), 219 (2020). (

V. S. Bushkova, S. I. Mudry, I. P. Yaremiy, V. I. Kravets Journal of Physical Studies 20(1/2), 1702 (2016) (

M. Xu, L. Kong, W. Zhou, and H. Li, The Journal of Physical Chemistry C, 111(51), 19141 (2007) (

A.I. Kachmar, V.M. Boichuk, I.M. Budzulyak, V.O. Kotsyubynsky, B.I. Rachiy and R.P. Lisovskiy, Fullerenes, Nanotubes and Carbon Nanostructures 27(9), 669 (2019) (

How to Cite
YaremiyI., MokhnatskyiM., KolkovskyiP., MokhnatskaL., YaremiyS., KachmarA. and CherkachK. 2020. Promising Cathode Material for Supercapacitors LaFe0.5Cr0.5O3 Perovskite Nanoparticles. Physics and Chemistry of Solid State. 21, 4 (Dec. 2020), 635-639. DOI:
Scientific articles

Most read articles by the same author(s)