Ultrafine beta-FeOOH and Fe3O4 obtained by precipitation method: comparative study of electrical and electrochemical properties

  • L.V. Mokhnatska Vasyl Stefanyk Precarpathian National University
  • V.O. Kotsyubynsky Vasyl Stefanyk Precarpathian National University
  • V.M. Boichuk Vasyl Stefanyk Precarpathian National University
  • M.L. Mokhnatskyi Vasyl Stefanyk Precarpathian National University
  • Kh.V. Bandura Ivano-Frankivsk National Medical University
  • A.I. Kachmar Vasyl Stefanyk Precarpathian National University
  • M.A. Hodlevska Vasyl Stefanyk Precarpathian National University
  • V.V. Bachuk Ivano-Frankivsk National Technical University of Oil and Gas
Keywords: iron oxides, super-linear dependence, electrode material, supercapacitor, impedance, spectroscopy, specific capacity, electrical conductivity, cyclic voltammetry

Abstract

In this work, ultrafine powders of b-FeOOH and Fe3O4 have been obtained by the precipitation method. The values of the specific surface area for materials b-FeOOH and Fe3O4 are 101 and 135 m2/h. Frequency dependences of specific electrical conductivity have been obtained in the temperature range of 20-150 oC. It has been found that the materials show a superlinear dependence (SPL). In addition, the crossover energies from dc to JPL and from JPL to SPL have been calculated: Edc = 0.55eV, Ep1 = 0.51eB, Ep2 = 0.16eB and Edc = 0.22 eV, Ep1 = 0.21eB, Ep2 = 0.1 eB. Potentiodynamic studies have been performed at a scan rate from 1 mV/s to 50 mV/s. The b-FeOOH electrode material showed a specific capacitance value of 80 F/g at a scan rate of 1 mV/s, while the specific capacitance of the Fe3O4 material reached 32 F/g. Galvanostatic measurements have been done for discharge currents of 0.05 A/g, 0.1 A/g -  0.25 A/g. b-FeOOH sample is characterized by the maximum specific energy value of 8 W h/kg at the value of specific power equal to 20 W/kg, and Fe3O4 material is characterized by the maximum specific energy of about 3.5 W h/kg. 

References

B.E. Conway, Electrochemical Super capacitor and Technological Applications. (Kluwer-Plenum Press, New York, 1999).

A.J. Burke, Power Sources 91, 37 (2000) (doi.org/10.1016/S0378-7753(00)00485-7).

L.V. Mokhnatska, V.O. Kotsyubynsky, A. Hrubyak, S.V. Fedorchenko, S.І. Vorobiov, Journal of Nano-and Electronic Physics 10(3), 03029 (2018) (10.21272/jnep.10(3).03029).

X. Rao, X. Su, C. Yang, J. Wang, X. Zhen, D. Ling, Cryst. Eng. Comm. 15(36), 7250 (2013) (doi.org/10.1039/C3CE40430G).

D.N. Bakoyannakis, E.A. Deliyanni, A.I. Zouboulis, K.A. Matis, L. Nalbandian, T. Kehagias, Microporous and Mesoporous Materials 59(1), 35 (2003) (doi.org/10.1016/S1387-1811(03)00274-9).

Y.X. Chen, L.H. He, P.J. Shang, Q.L. Tang, Z.Q. Liu, H. Liu, L.P Zhou, Journal of Materials Science and Technology 27(1), 41 (2011).

H. Hosseinpour, A. Sadeghi, Morisako, Journal of Magnetism and Magnetic Materials 316(2), e283 (2007) (doi.org/10.1016/j.jmmm.2007.02.119).

I.I. Popov, R.R. Nigmatullin, A.A. Khamzin, I.V. Lounev, Journal of Physics: Conference Series 394, 12 (2012) (doi: 10.1063/1.4764343).

J.R. Macdonald, Solid State Ionics 133(1-2), 79 (2000) (doi.org/10.1016/S0167-2738(00)00737-2).

J.C. Dyre, T.B. Schroder, Rev. Mod. Phys. 72(3), 873 (2000) (doi.org/10.1103/RevModPhys.72.873).

. S.K. Mandal, S. Singh, P. Dey, J.N. Roy, P.R Mandal, T.K. Nath, Philo¬sophical Magazine 97(19), 1628 (2017) (doi.org/10.1080/14786435.2017.1312021),

D.P. Singh, K. Shahi, K. Kar. Kamal, Solid State Ionics 287, 89 (2016) (doi.org/10.1016/j.ssi.2016.01.048).

A.K. Jonscher, Nature 267, 673 (1977).

J. Dieckhöfer, O. Kanert, R. Küchler, A. Volmari, Phys. Rev. B 55, 14836 (1997) (doi.org/10.1103/PhysRevB.55.14836).

P. Almond, G. K. Duncan, A. R. West, Solid State Ionics, 8, 159-164 (1983) (doi.org/10.1016/0167-2738(83)90079-6).

А. Radoń, D. Łukowiec, M. Kremzer, J. Mikuła, P. Włodarczyk, Materials 11(5), 735 (2018) (doi.org/10.3390/ma11050735).

M. Sertkol, Y. Kōseoglu, A. Baykal, J. Magn, Journal of Magnetism and Magnetic Materials 322(7), 866 (2010) ( doi.org/10.1016/j.jmmm.2009.11.018).

J.P. Tiwari, K. Shahi, Philosophical Magazine 87(29), 4475 (2007) (doi.org/10.1080/14786430701551913).

R. Cheruku, G. Govindaraj, V. Lakshmi, Materials Chemistry and Physics 146(3), 389 (2014) (doi: 10.1016/j.matchemphys.2014.03.043).

S. Nowick, B. SLim, A.V. Vaysleyb, A.S. Nowick Solids 172-174(2), 1243 (1994).

D.P. Singh, K. Shahi, K. Kar. Kamal, Solid State Ionics 287, 89 (2016) (doi.org/10.1016/j.ssi.2016.01.048).

R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses, (John Wiley & Sons, Weinheim, Germany, 2nd edition, 2003).

J.K. Leland, A.J. Bard, Journal of Physical Chemistry 91(19), 5076 (1987) (doi.org/10.1021/j100303a039).

B.B. Li, Y.Q. Liang , X.J. Yang , Z.D. Cui, S.Z. Qiao, S.L. Zhu, K. Yin, Nanoscale 7(40), 16704 (2015) (doi.org/10.1039/C5NR04666A).

Published
2020-12-30
How to Cite
[1]
MokhnatskaL., KotsyubynskyV., BoichukV., MokhnatskyiM., BanduraK., KachmarA., HodlevskaM. and BachukV. 2020. Ultrafine beta-FeOOH and Fe3O4 obtained by precipitation method: comparative study of electrical and electrochemical properties. Physics and Chemistry of Solid State. 21, 4 (Dec. 2020), 680-688. DOI:https://doi.org/10.15330/pcss.21.4.680-688.
Section
Scientific articles

Most read articles by the same author(s)