Physical Properties of Zinc Compounds Obtained by Electrolytic Method
DOI:
https://doi.org/10.15330/pcss.22.1.160-167Keywords:
zinc oxide, zinc sulfide, hydrozincite, XRD analysis, nanoparticles dimensioning, Debye-Sherrer formula, Williamson Hall method, thermal annealingAbstract
The influence of the chemical composition of the electrolyte and its temperature on the process of sythesis of nanosized zinc compounds by electrolytic method using zinc electrodes was investigated. X-ray studies have been conducted and its results were used to determine the composition of the obtained nanocrystal samples and its dimensioning using the Debye and the Williamson Hall methods. Comparisons of the results of dimensioning of nanocrystals by both methods were made. Also discussed the possibilities of synthesis of nanoparticles of zinc oxide, zinc sulfide and hydrozincite by electrolytic method. It is shown, that depending on the electrolyte composition, nanocrystals of zinc oxide, zinc sulfide, hydrozincite or their mixture are obtained. The effect of thermal annealing on the samples composition and dimensioning was investigated.
References
H.M. Okrepka, V.M. Tomashyk, Physics and Chemistry of Solid State 16(4), 711 (2015) (DOI: 10.15330/pcss.16.4.711-715).
J. Shah, R. Kumar Kotnala, J. of Physics and Chemistry of Solids 108, 15 (2017) (DOI: 10.1016/j.jpcs.2017.04.007).
M.W. Bouabdelli, F. Rogti, N. Lakhdar, M. Maache, Journal of Nano- and Electronic Physics 12(3), 03002 (2020) (DOI: 10.21272/jnep.12(3).03002).
A. Gadalla, M.S. Abd El-Sadek, R. Hamood, Chalcogenide Letters 15(5), 281 (2018).
Ankita, S. Kumar, S. Saralch, D. Pathak, Journal of Nano- and Electronic Physics 11(4), 04027 (2019) (DOI: 10.21272/jnep.11(4).04027).
O.Z. Didenko, P.E. Strizhak, G.R. Kosmambetova, N.S. Kalchuk, Physics and Chemistry of Solid State 10(1), 106 (2009).
V.S. Burakov, A.A. Nevar, M.I. Nedel’ko et al, Tech. Phys. Lett. 34, 679 (2008). (DOI: 10.1134/S1063785008080166).
C. Chen, B. Yu, Ping Liu, J. Liu and L. Wang, Journal of ceramic processing research 12(4), 420 (2011).
N.B. Danilevskaya, A.V. Lysytsya, M.V. Moroz et al, Tech. Phys. 63, 411 (2018) (DOI: 10.1134/S1063784218030076).
N.B. Danilevska, M.V. Moroz, B.D. Nechyporuk, N.Y. Novoseletskyy, B.P. Rudyk, Journal of Physical Studies 20(3), 3601 (2016), (DOI: 10.30970/jps.20.3601).
N.A. Salahuddin, M. El-Kemary, E.M. Ibrahim, Nanoscience and Nanotechnology 5(4), 82 (2015) (DOI: 10.5923/j.nn.20150504.02).
W. Wen-Zhong, L. Yu-Jie, S. Hong-Long, Z. Gu-Ling, Chinese Physics Letters 31(9), 097802-1 (2014) (DOI: 10.1088/0256-307X/31/9/097802).
S.YU. Kapitula, B.D. Nechyporuk, N.B. Danilevsʹka, B.A. Tataryn, Journal of Nano- and Electronic Physics 7, 03050 (2015).
N.B. Danilevsʹka, M.V. Moroz, B.D. Nechyporuk, M.Yu. Novoseletsʹkyy, V.O. Yukhymchuk, J. Nano- Electron. Phys. 8, 02041 (2016).
V.D. Mote, Y. Purushotham, B.N. Dole, Journal of theoretical and applied physics 6, 1, 2251, (2012) (DOI: 10.1186/2251-7235-6-6).
K. Karthik, S. Dhanuskodi, AIP Conference Proceedings 1731, 050021 (2016) (DOI: 10.1063/1.4947675).
Yu.I. Sirotin, M.P. Shaskol'skaya, Osnovy kristallofiziki (Nauka, Moscow, 1975).
S. Adachi, Handbook on physical properties of semiconductors Vol. 3, II-VI Compound Semiconductor (Springer, Boston, 2004) (DOI:10.1007/1-4020-7821-8).
K. Ozga, J. Michel, J. Ebothé, B.D. Nechyporuk, I.V. Kityk, A.A. Albassam, A.M. El-Naggar, A.O. Fedorchuk, Physica E, 81, 281 (2016) 289 (DOI: 10.1016/j.physe.2016.03.041).
N.B. Danilevskaya, N.V. Moroz, B.D. Nechyporuk, B.P. Rudyk, Journal of Nano- and Electronic Physics 8(1), 01006 (2016) (DOI: 10.21272/jnep.8(1).01006).
A. Jain, S. Panwar, T.W. Kang, S. Kumar, J Mater Sci: Mater Electron 24, 5147 (2013) (DOI: 10.1007/s10854-013-1537-z).
P.V. Raleaooaa, A. Roodt, G.G. Mhlongoc, D.E. Motaungc, R.E. Kroona, O.M. Ntwaeaborwad, Physica B 507, 13 (2017) (DOI: 10.1016/j.physb.2016.11.031).