Thermodynamic properties of selected compounds of the Ag–In–Se system determined by the electromotive force method

Array

Authors

  • M.V. Moroz National University of Water and Environmental Engineering, Rivne, Ukraine
  • P.Yu. Demchenko Ivan Franko National University of Lviv, Lviv, Ukraine
  • F. Tesfaye Åbo Akademi University, Turku, Finland; Metso Outotec Finland Oy, Espoo, Finland
  • M.V. Prokhorenko Lviv Polytechnic National University, Lviv, Ukraine
  • O.I. Mysina National University of Water and Environmental Engineering, Rivne, Ukraine
  • L.V. Soliak National University of Water and Environmental Engineering, Rivne, Ukraine
  • N.P. Yarema Lviv Polytechnic National University, Lviv, Ukraine
  • S.V. Prokhorenko Lviv Polytechnic National University, Lviv, Ukraine
  • O.V. Reshetnyak Ivan Franko National University of Lviv, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.23.3.575-581

Keywords:

Ag-containing compounds, Thermodynamic properties, Phase equilibria, Gibbs energy, EMF method

Abstract

The equilibrium phase space of the Ag–In–Se system in the part AgInSe2–InSe–Se below 500 K consists seven three-phase regions In2Se3–AgIn11Se17–Se (I), AgIn11Se17–AgIn5Se8–Se (II), AgIn5Se8–AgInSe2–Se (IІІ), In2Se3–In6Se7–AgIn11Se17 (ІV), In6Se7–AgIn11Se17–AgIn5Se8 (V), InSe–In6Se7–AgIn5Se8, and InSe–AgIn5Se8–AgInSe2 (VI). Division of the AgInSe2–InSe–Se into separate phase regions was performed based on electromotive force vs temperature dependences of six electrochemical cells (ECCs) of the type: (−) С | Ag | SЕ | R(Ag+) | PЕ | С (+), where C is the graphite (inert electrode), Ag is the left (negative) electrode, SE is the solid-state electrolyte (Ag3GeS3Br glass), PE is the right (positive) electrode, R(Ag+) is the buffer region of PE that contacts with SE. The process of forming of the thermodynamically stable set of phases from phase non-equilibrium mixture of compounds specified in (I)–(VI) is carried out in the R(Ag+) region. The Ag+ ions act as the small nucleation centers for stable phases. Based on the temperature dependences of the electromotive force of ECCs with PE of the (I)–(VI) phase regions, the standard thermodynamic functions of the binary In6Se7 and three ternary compounds in the adjacent phase regions were calculated for the first time. The agreement of the calculated values of the standard Gibbs energies of the AgIn5Se8 compound in two different phase regions (II) and (V): -(819,6±8,9) kJ·mol −1 and -(820,0±8,9) kJ·mol −1 characterizes the phase composition of the regions (I), (II), (IV), and (V) below 500 K as a combination of compounds of formulaic composition.

References

I.D. Olekseyuk, O.V. Krykhovets, The Ag2Se–In2Se3–SnSe2 System, J. Alloys Compd., 316, 193 (2001); https://doi.org/10.1016/S0925-8388(00)01283-4.

S. Chen, J. Chang, S. Tseng, et al. Phase Diagrams of the Ag–In–Se Photovoltaic Material System, J. Alloys Compd., 656, 58 (2016); https://doi.org/10.1016/j.jallcom.2015.09.206.

T. Çolakoğlu, M. Parlak, Structural Characterization of Polycrystalline Ag–In–Se Thin Films Deposited by e-Beam Technique, Appl. Surf. Sci., 254, 1569 (2008); https://doi.org/10.1016/j.apsusc.2007.07.092.

L. Jatautė, V. Krylova, N. Dukštienė, M. Lelis, S. Tučkutė, Ag-In-Se Films on Flexible Architectural Textiles as Efficient Material for Optoelectronics Applications: A Preliminary Study, Thin Solid Films, 721, 138566 (2021); https://doi.org/10.1016/j.tsf.2021.138566.

L. Peraldo Bicelli, Thermodynamic Evaluation of the N-AgIn5Se8 and n-CuIn5S8 Stability in Photoelectrochemical Cells, Solar Energy Materials, 15, 77 (1987); https://doi.org/10.1016/0165-1633(87)90084-0.

L. Peraldo Bicelli, Thermodynamic Stability of Silver Indium Selenide (n-AgInSe2) in Photoelectrochemical Cells, J. Phys. Chem., 92(24), 6991 (1988); https://doi.org/10.1021/j100335a030.

G.S. Hasanova, A.I. Aghazade, Y.A. Yusibov, M.B. Babanly, Thermodynamic Properties of the BiTe and Bi8Te9 Compounds, Physics and Chemistry of Solid State, 21(4), 714 (2020); https://doi.org/10.15330/pcss.21.4.714-719.

S.Z. Imamaliyeva, I.F. Mehdiyeva, D.B. Taghiyev, M.B. Babanly, Thermodynamic Investigations of the Erbium Tellurides by EMF Method, Physics and Chemistry of Solid State, 21(2), 312 (2020); https://doi.org/10.15330/pcss.21.2.312-318.

T.M. Alakbarova, E.N. Orujlu, D.M. Babanly, S.Z. Imamaliyeva, M.B. Babanly, Solid-Phase Equilibria in the GeBi2Te4-Bi2Te3-Te System and Thermodynamic Properties of Compounds of the GeTe·mBi2Te3 Homologous Series, Physics and Chemistry of Solid State, 23(1), 25 (2022); https://doi.org/10.15330/pcss.23.1.25-33.

I. Barin, Thermochemical Data of Pure Substances (Wiley, 1995).

A. Kroupa, Modelling of Phase Diagrams and Thermodynamic Properties Using Calphad Method – Development of Thermodynamic Databases, Comput. Mater. Sci., 66, 3 (2013); http://dx.doi.org/10.1016/j.commatsci.2012.02.003.

B. Sundman, Q. Chen, Y. Du, A Review of Calphad Modeling of Ordered Phases, J. Phase Equilib. Diffus., 39, 678 (2018); https://doi.org/10.1007/s11669-018-0671-y.

Diffractometer Stoe WinXPOW, version 3.03 (Stoe & Cie GmbH, Darmstadt, 2010).

W. Kraus, G. Nolze, POWDER CELL – a Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns, J. Appl. Crystallogr., 29(3), 301 (1996); https://doi.org/10.1107/S0021889895014920.

J. Rodriguez-Carvajal, Recent Developments of the Program FULLPROF. IUCr Commission on Powder Diffraction Newsletter, 26, 12 (2001).

R.T. Downs, M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral., 88(1), 247 (2003).

P. Villars and K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds, Release 2014/15, ASM International: Materials Park. OН, USA, 2014.

M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, S. Prokhorenko, O. Reshetnyak, Non-Activation Synthesis and Thermodynamic Properties of Ternary Compounds of the Ag–Te–Br System, Thermochim. Acta, 698, 178862 (2021); https://doi.org/10.1016/j.tca.2021.178862.

M.V. Prokhorenko, M.V. Moroz, P.Yu. Demchenko, Measuring the Thermodynamic Properties of Saturated Solid Solutions in the Ag2Te-Bi-Bi2Te3 System by the Electromotive Force Method, Russ. J. Phys. Chem. A., 89, 1330 (2015); https://doi.org/10.1134/S0036024415080269.

M.V. Moroz, P.Yu. Demchenko, M.V. Prokhorenko, O.V. Reshetnyak, Thermodynamic Properties of Saturated Solid Solutions of the Phases Ag2PbGeS4, Ag0.5Pb1.75GeS4 and Ag6.72Pb0.16Ge0.84S5.20 of the Ag-Pb-Ge-S System Determined by EMF Method, J. Phase Equilib. Diffus., 38, 426 (2017); https://doi.org/10.1007/s11669-017-0563-6.

F. Tesfaye, P. Taskinen, Electrochemical Study of the Thermodynamic Properties of Matildite (β-AgBiS2) in Different Temperature and Compositional Ranges, J. Solid State Electrochem., 18, 1683 (2014); https://doi.org/10.1007/s10008-014-2395-1.

M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, D. Lindberg, O. Reshetnyak, L. Hupa, Phase Equilibria and Thermodynamics of Selected Compounds in the Ag–Fe–Sn–S System, J. Electron. Mater., 47, 5433 (2018); https://doi.org/10.1007/s11664-018-6430-3.

E.G. Osadchii, O.A. Rappo, Determination of Standard Thermodynamic Properties of Sulfides in the Ag-Au-S System by Means of a Solid-State Galvanic Cell, Am. Mineral., 89, 1405 (2004); https://doi.org/10.2138/am-2004-1007.

G.S. Hasanova, A.I. Aghazade, S.Z. Imamaliyeva, Y.A. Yusibov, M.B. Babanly, Refinement of the Phase Diagram of the Bi-Te System and the Thermodynamic Properties of Lower Bismuth Tellurides, JOM, 73, 1511 (2021); https://doi.org/10.1007/s11837-021-04621-1.

G.S. Hasanova, A.I. Aghazade, D.M. Babanly, S.Z. Imamaliyeva, Y.A. Yusibov, M.B. Babanly, Experimental Study of the Phase Relations and Thermodynamic Properties of Bi-Se System, J. Therm. Anal. Calorim., 147, 6403 (2022); https://doi.org/10.1007/s10973-021-10975-0.

Published

2022-09-24

How to Cite

Moroz, M., Demchenko, P., Tesfaye, F., Prokhorenko, M., Mysina, O., Soliak, L., … Reshetnyak, O. (2022). Thermodynamic properties of selected compounds of the Ag–In–Se system determined by the electromotive force method: Array. Physics and Chemistry of Solid State, 23(3), 575–581. https://doi.org/10.15330/pcss.23.3.575-581

Issue

Section

Scientific articles (Chemistry)