Modeling of diffusion motion of In nanoparticles in a CdTe crystal during laser-induced doping

  • S.M. Levytskyi V.E. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine
  • T. Zhao Energy Materials and Optoelectronics Unit, Songshan Lake Materials Laboratory
  • Z. Cao National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • A.V. Stronski National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
Keywords: CdTe, laser induced doping, X/γ-ray detectors

Abstract

In order to solve the problem of the ohmic contact between the crystal surface and the metal electrode in the manufacturing process of the X/γ-ray detector, this paper uses a laser to probe the doping process of In/CdTe crystals in different media. In this experiment, the Traveling Heater Method (THM) is used to obtain CdTe(111) crystals that meet the requirements (ρ >109Ω∙cm). In and Au materials are respectively coated on the surface of the crystal sample by the vacuum thermal evaporation method to obtain the crystal sample meeting the requirements. The high-resistance p-type CdTe crystal of a relatively thick In film is irradiated with nanosecond laser pulses, the In film is used as an n-type doping source and as an electrode after laser irradiation.

References

K. Zanio, Cadmium Telluride, In: Semiconductors and Semimetals (Academic Press: New York, USA, 1978 .

M. Hage-Ali, P. Siffert, CdTe nuclear detectors and applications, in: Semiconductors for Room Temperature Nuclear Detector Applications, in: Semiconductors and Semimetals (vol. 43, Academic Press, San Diego, 1995) http://refhub.elsevier.com/S0168-9002(19)31508-6/sb10.

U.V. Desnica, Prog. Cryst. Growth Charact. Mater. 36(4), 291 (1998) https://doi.org/10.1016/S0960-8974(98)00011-4.

P.O. Gentsar, S.M. Levytskyi, Journal of Nano- and Electronic Physics 6(3), 03013 (2020) https://doi.org/10.21272/jnep.12(3 .03013 .

K.S. Zelenska, D.V. Gnatyuk, T. Aoki, 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Proceedings, 1-2 (2015) https://doi.org/10.1109/NSSMIC.2015.7582277.

K.S. Zelenska, D.V. Gnatyuk, T. Aoki, 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Proceedings, 1-2 (2016) https://doi.org/10.1109/NSSMIC.2016.8069953.

V.А. Gnatyuk, T. Aoki, O.I. Vlasenko, S.N. Levytskyi, Y. Hatanaka, C.P. Lambropoulos, Proceedings of SPIE, Vol. 7079, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics X. 70790G-1-9 (2008) https://doi.org/10.1117/12.799233.

V.A. Gnatyuk, T. Aoki, E.V. Grushko, L.A. Kosyachenko and O.I. Vlasenko, Proc. SPIE 8142 (2011) (81420B-1-7 .

V.A. Gnatyuk, S.N. Levytskyi, O.I. Vlasenko, T. Aoki, Advanced Materials Research 222, 32 (2011) https://doi.org/10.4028/www.scientific.net/AMR.222.32.

V.A. Gnatyuk, T. Aoki, O.I. Vlasenko, S.N. Levytskyi, 2011 IEEE Nuclear Science Symposium Conference Record, Proceedings, 4506 (2011) https://doi.org/10.1109/NSSMIC.2011.6154699.

F.A. Kroger, in: The Chemistry of Imperfect Solids (North-Holland, Amsterdam 1973.

M. Wienecke, H. Berger, M. Schenk, Mater. Sci. Eng. B 13, 219 (1993).

M. A. Berding, Phys. Rev. B 60, 8943 (1999).

R. F. Brebrick, R. Fang, J. Phys. Chem. Solids 57, 451 (1996).

F.T.J. Smith, Metal. Trans. 1, 617 (1970).

P.M. Fochuk, L.P. Scherbak, P.I. Feichuk, O.E. Panchuk, Inorg. Mater. 31, 1276 (1995).

V.P. Veleshchuk, A. Baidullaeva, A.I. Vlasenko, V.A. Gnatyuk, B.K. Dauletmuratov, S.N. Levitskii, O.V. Lyashenko, T. Aoki, Physics of the Solid State, 52(3), 469 (2010) https://doi.org/10.1134/S1063783410030054.

T. Aoki, D.V. Gnatyuk, V.A. Odarych, L.V. Poperenko, I.V. Yurgelevych and S.N. Levytskyi, Thin Solid Films 519(9) 2834 (2011) https://doi.org/10.1016/j.tsf.2010.12.049 .

V.A. Gnatyuk, T. Aoki, M. Niraula and Y. Hatanaka, Semicond. Sci. Technol. 18(6) 560 (2003).

V.A. Gnatyuk, T. Aoki, Y. Hatanaka, IEEE Transactions on Nuclear Science 51(5), Part 1, 2466 (2004) https://doi.org/10.1109/TNS.2004.836068.

C.P. Lambropoulos, T. Aoki, J. Crocco, E. Dieguez, C. Disch, A. Fauler, M. Fiederle, D.S. Hatzistratis, V.A. Gnatyuk, K. Karafasoulis, L.A. Kosyachenko, S.N. Levytskyi, D. Loukas, O.L. Maslyanchuk, A. Medvids, T. Orphanoudakis, I. Papadakis, A. Papadimitriou, C. Potiriadis, T. Schulman, V.M. Sklyarchuk, K. Spartiotis, G. Theodoratos, O.I. Vlasenko, K. Zachariadou, M. Zervakis, IEEE Transactions on Nuclear Science 58(5), Part 2, 2363 (2011) https://doi.org/10.1109/TNS.2011.2162964.

Published
2021-05-26
How to Cite
[1]
LevytskyiS., ZhaoT., CaoZ. and StronskiA. 2021. Modeling of diffusion motion of In nanoparticles in a CdTe crystal during laser-induced doping. Physics and Chemistry of Solid State. 22, 2 (May 2021), 301-306. DOI:https://doi.org/10.15330/pcss.22.2.301-306.
Section
Scientific articles (Physics)