Photonic properties of devices based on multicomponent crystalline compounds with content (Si, Ge, Sn)
DOI:
https://doi.org/10.15330/pcss.22.3.470-476Keywords:
crystal, mole fraction, direct and indirect transition, energy gap, absorption coefficient, photosensitivityAbstract
The paper presents the results of optical and photoelectric measurements and their analysis for Tl1-xIn1-xDIVxSe2 (DIV – Si, Ge, Sn) crystalline compounds in the wavelength range 0.41.4 μm at a temperature T = 300 K. The work aims to investigate the influence of mole fraction DIVSe2 on the mechanisms of interband transitions and the basic photon parameters of crystals of ТlInSe2–DIVSe2 solid solutions. It was found that the change in the physical properties of the mole fraction of the components x associated with the rearrangement of the band structure significantly expands the functionality of the Tl1-xIn1-x(Si, Ge, Sn)xSe2 (x0.25) crystalline compounds as promising materials for optoelectronic devices.
References
I.V. Alekseev, Izv. AN USSR. Inorg. Mater. 28, 2404 (1992).
E. Kerimova, S. Mustafaeva, D. Guseinova, et al., Phys. Status Solidi A, 179(1), 199 (2000); https://doi.org/10.1002/1521-396X(200005)179:1<199::AID-PSSA199>3.0.CO;2-W.
A.E. Bakhyshov, M.F. Agaeva, A.M. Darvish, Phys. Status Solidi B 91(1), K31 (1979); https://doi.org/10.1002/pssb.2220910152.
M. Hanias, A.N. Anagnostopoulos, K. Kambas, J. Spyridelis. Physica B 160(2), 154 (1989); https://doi.org/10.1016/0921-4526(89)90050-1.
H.Y. Fan, Rep. Progr. Phys. 19(1), 107 (1956); https://doi.org/10.1088/0034-4885/19/1/304.
O. Yildirim, Energy bands of TlSe and TlInSe2 in tight binding model. 2005. PhD Thesis. Middle East Technical University.
G. Orudzhev, N. Mamedov, H. Uchiki, et al., J. Phys. Chem. Solids 64(9-10), 1703 (2003); https://doi.org/10.1016/S0022-3697(03)00073-8.
I. Nuritdinov, S.K. Umarov, V.D. Rustamov, J. Perspektivnye materialy (1), 46 (2003); http://j-pm.imet-db.ru/?archive&a=174#.
M.Yu. Mozolyuk, L.V. Piskach, A.O. Fedorchuk, et al., J. Alloys Compd. 509(6), 2693 (2011); https://doi.org/10.1016/j.jallcom.2010.11.112.
G.L. Myronchuk, O.V. Zamurueva, O.V. Parasyuk, et al., J. Mater. Sci.: Mater. Electron 25(7), 3226 (2014); https://doi.org/10.1007/s10854-014-2007-y.
O.V. Zamurueva, G.L. Myronchuk, G. Lakshminarayana, et al., Optical Mater. 37, 614 (2014); https://doi.org/10.1016/j.optmat.2014.08.004.
G.L. Myronchuk, G.E. Davydyuk, O.V. Parasyuk, et al., J. Mater. Sci.: Mater. Electron. 24(9), 3555 (2013); DOI:10.1007/s10854-013-1285-0.
J.I. Pankove, Оptical Processes in Semiconductors (Мir, Moscow, 1973).
G.E. Davydyuk, O.Y. Khyzhun , A.H. Reshak, et al., Phys. Chem. Chem. Phys. 15, 6965 (2013); https://doi.org/10.1039/C3CP50836F.
G.E. Davydyuk, M. Piasecki , O.V. Parasyuk, et al., Opt. Mater. 35(12), 2514 (2013); https://doi.org/10.1016/j.optmat.2013.07.012.
J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15(2), 627 (1966); https://doi.org/10.1002/pssb.19660150224.
M. Piasecki, G.L. Myronchuk, O.V. Zamurueva, et al., Huge Operation by Energy Gap of Novel Narrow Band Gap Tl1-xIn1-xBxSe2 (B=Si, Ge): DFT, X-ray Emission and Photoconductivity Studies. Mater. Res. Express, 3(2), 025902 (2016); https://doi.org/10.1088/2053-1591/3/2/025902.
W.O. Groves, A.H. Herzog, M.G. Craford, Appl. Phys. Lett. 19(6), 184 (1971); https://doi.org/10.1063/1.1653876.