Structure, adsorption properties and Fenton-like catalytic activity of cobalt ferrite nanoparticles synthesized with Physalis extract
DOI:
https://doi.org/10.15330/pcss.26.2.216-230Keywords:
“green” synthesis, ferrite, adsorption, Fenton-like activity, electrochemical test, oxidative degradationAbstract
CoFe2O4 nanoparticles were synthesized from different parts of the Physalis. Characterization techniques including XRD and FTIR confirmed the spinel structure. According to the FTIR data, the spectra contain peaks corresponding to organic residues originating from the reducing agent. The data of ХRD analysis indicate an increase in the lattice parameter and crystallite size in the order CoFe2O4–F < CoFe2O4–FH < CoFe2O4–H. According to the SEM observations, the CoFe2O4–H demonstrates a lower degree of agglomeration coupled with significant porosity, whereas the CoFe2O4–FH and CoFe2O4–F samples display more distinct lamellar structures. The inversion degree was calculated based on the Mössbauer spectra of the samples. The use of the physalis fruit+husk extract results in the formation of nanoparticles with an increased BET surface area (76 m2/g), whereas using of physalis fruit extract results in the formation of an increased area of mesopores (46 m2/g). The adsorption properties and Fenton-like catalytic activity of the synthesized samples have been investigated. The highest degree of Congo Red dye adsorption was observed for the sample CoFe2O4–FH while the lowest was for the sample CoFe2O4–H. FTIR spectra confirmed the chemosorption of the dye molecules onto the ferrite surface. The adsorption is higher on the surface with a higher degree of functionalization. The Fenton-like oxidation of Congo Red dye in the presence of H2O2 has been studied, demonstrating the high catalytic activity of all samples in dye removal and H2O2 decomposition. Amperometric I–τ curve measurements were used to observe the changes in the interactions between H2O2 and the ferrites.
References
I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem. (2019); https://doi.org/10.1016/j.arabjc.2017.05.011.
P. Anastas, N. Eghbali, Green chemistry: Principles and practice, Chem. Soc. Rev. 39, 301 (2010); https://doi.org/10.1039/b918763b.
N. Shreyash, S. Bajpai, M.A. Khan, Y. Vijay, S.K. Tiwary, M. Sonker, Green Synthesis of Nanoparticles and Their Biomedical Applications: A Review, ACS Appl. Nano Mater. 4, 11428 (2021); https://doi.org/10.1021/acsanm.1c02946.
M. Liaskovska, T. Tatarchuk, M. Bououdina, I. Mironyuk, Green Synthesis of Magnetic Spinel Nanoparticles, in: Springer Proc. Phys., (2019). https://doi.org/10.1007/978-3-030-17755-3_25.
M. Liaskovska, T. Tatarchuk, Green synthesis of zinc ferrite, Mol. Cryst. Liq. Cryst. 719, 45 (2021); https://doi.org/10.1080/15421406.2020.1862459.
I.M. Chung, I. Park, K. Seung-Hyun, M. Thiruvengadam, G. Rajakumar, Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications, Nanoscale Res. Lett. 11, 1 (2016); https://doi.org/10.1186/s11671-016-1257-4.
S. Gómez-Graña, M. Perez-Ameneiro, X. Vecino, I. Pastoriza-Santos, J. Perez-Juste, J.M. Cruz, A.B. Moldes, Biogenic synthesis of metal nanoparticles using a biosurfactant extracted from corn and their antimicrobial properties, Nanomaterials. 7 (2017); https://doi.org/10.3390/nano7060139.
T. Tatarchuk, M. Liaskovska, V. Kotsyubynsky, M. Bououdina, Green synthesis of cobalt ferrite nanoparticles using Cydonia oblonga extract: structural and mössbauer studies, Mol. Cryst. Liq. Cryst. 672 (2018); https://doi.org/10.1080/15421406.2018.1542107.
S.S.L. Ali, S. Selvaraj, K.M. Batoo, A. Chauhan, G. Rana, S. Kalaichelvan, A. Radhakrishnan, Green synthesis of cubic spinel ferrites and their potential biomedical applications, Ceram. Int. (2024); https://doi.org/10.1016/J.CERAMINT.2024.10.084.
M. Madhukara Naik, H.S. Bhojya Naik, G. Nagaraju, M. Vinuth, K. Vinu, R. Viswanath, Green synthesis of zinc doped cobalt ferrite nanoparticles: Structural, optical, photocatalytic and antibacterial studies, Nano-Structures and Nano-Objects. 19, 100322 (2019); https://doi.org/10.1016/j.nanoso.2019.100322.
D. Gingasu, I. Mindru, S. Preda, J.M. Calderon-Moreno, D.C. Culi, L. Patron, L. Diamandescu, Green synthesis of cobalt ferrite nanoparticles using plant extracts, Rev. Roum. Chim. 62, 645 (2017).
M.K. Satheeshkumar, E.R. Kumar, C. Srinivas, N. Suriyanarayanan, M. Deepty, C.L. Prajapat, T.V.C. Rao, D.L. Sastry, Study of structural, morphological and magnetic properties of Ag substituted cobalt ferrite nanoparticles prepared by honey assisted combustion method and evaluation of their antibacterial activity, J. Magn. Magn. Mater. 469, 691 (2019); https://doi.org/https://doi.org/10.1016/j.jmmm.2018.09.039.
R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method, J. Phys. Chem. Solids. 110, 87 (2017); https://doi.org/https://doi.org/10.1016/j.jpcs.2017.05.029.
K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, R.J. Ramalingam, H.A. Al-Lohedan, Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic, and antimicrobial properties, Mater. Chem. Phys. 204, 410 (2018); https://doi.org/10.1016/j.matchemphys.2017.10.077.
Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B. Bt Ahmad Khairudin, S.E. Bt Mohamad, K.X. Lee, Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract, Nanoscale Res. Lett. 11 (2016); https://doi.org/10.1186/s11671-016-1498-2.
M. Madhukara Naik, H.S. Bhojya Naik, G. Nagaraju, M. Vinuth, H. Raja Naika, K. Vinu, Green synthesis of zinc ferrite nanoparticles in Limonia acidissima juice: Characterization and their application as photocatalytic and antibacterial activities, Microchem. J. 146, 1227 (2019); https://doi.org/10.1016/j.microc.2019.02.059.
B.S. Surendra, Green engineered synthesis of Ag-doped CuFe2O4: Characterization, cyclic voltammetry and photocatalytic studies, J. Sci. Adv. Mater. Devices. 3, 44 (2018); https://doi.org/10.1016/j.jsamd.2018.01.005.
D. Gingasu, I. Mindru, O.C. Mocioiu, S. Preda, N. Stanica, L. Patron, A. Ianculescu, O. Oprea, S. Nita, I. Paraschiv, M. Popa, C. Saviuc, C. Bleotu, M.C. Chifiriuc, Synthesis of nanocrystalline cobalt ferrite through soft chemistry methods: A green chemistry approach using sesame seed extract, Mater. Chem. Phys. 182, 219 (2016); https://doi.org/10.1016/j.matchemphys.2016.07.026.
N. Mazova, V. Popova, A. Stoyanova, Food Science and Applied Biotechnology Phytochemical composition and biological activity of Physalis spp.: A mini-review, Food Sci. Appl. Biotechnol. 2020, 56 (2020).
J. Ramakrishna Pillai, A.F. Wali, G.A. Menezes, M.U. Rehman, T.A. Wani, A. Arafah, S. Zargar, T.M. Mir, Chemical Composition Analysis, Cytotoxic, Antimicrobial and Antioxidant Activities of Physalis angulata L.: A Comparative Study of Leaves and Fruit, Molecules. 27 (2022); https://doi.org/10.3390/molecules27051480.
L.-X. Chen, G.-Y. Xia, Q.-Y. Liu, Y.-Y. Xie, F. Qiu, Chemical constituents from the calyces of Physalis alkekengi var. franchetii, Biochem. Syst. Ecol. 54, 31 (2014); https://doi.org/https://doi.org/10.1016/j.bse.2013.12.030.
C.-R. Zhang, W. Khan, J. Bakht, M.G. Nair, New antiinflammatory sucrose esters in the natural sticky coating of tomatillo (Physalis philadelphica), an important culinary fruit, Food Chem. 196, 726 (2016); https://doi.org/https://doi.org/10.1016/j.foodchem.2015.10.007.
Y.-M. Xu, E.M.K. Wijeratne, A.D. Brooks, P. Tewary, L.-J. Xuan, W.-Q. Wang, T.J. Sayers, A.A.L. Gunatilaka, Cytotoxic and other withanolides from aeroponically grown Physalis philadelphica, Phytochemistry. 152, 174 (2018); https://doi.org/https://doi.org/10.1016/j.phytochem.2018.04.018.
L.-X. Chen, G.-Y. Xia, H. He, J. Huang, F. Qiu, X.-L. Zi, New withanolides with TRAIL-sensitizing effect from Physalis pubescens L., RSC Adv. 6, 52925 (2016); https://doi.org/10.1039/C6RA07031K.
J.R. Medina-Medrano, N. Almaraz-Abarca, M.S. González-Elizondo, J.N. Uribe-Soto, L.S. González-Valdez, Y. Herrera-Arrieta, Phenolic constituents and antioxidant properties of five wild species of Physalis (Solanaceae), Bot. Stud. 56, 24.(2015); https://doi.org/10.1186/s40529-015-0101-y.
J. Qu, X. Yuan, X. Wang, P. Shao, Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L., Environ. Pollut. 159, 1783 (2011); https://doi.org/https://doi.org/10.1016/j.envpol.2011.04.016.
V. Sekar, M.M. Al-Ansari, J. Narenkumar, L. Al-Humaid, P. Arunkumar, A. Santhanam, Synthesis of gold nanoparticles (AuNPs) with improved anti-diabetic, antioxidant and anti-microbial activity from Physalis minima, J. King Saud Univ. -Sci. 34, 102197 (2022);https://doi.org/https://doi.org/10.1016/j.jksus.2022.102197.
G.S. Vasyliev, V.I. Vorobyova, O.M. Kuzmenko, M.I. Skiba, Electrochemical evaluation of reducing ability of plant extracts, (n.d.) 246–267.
A. Rondinone, A. Samia, Z. John, Characterizing the magnetic anisotropy constant of spinel cobalt ferrite nanoparticles, Appl. Phys. Lett. 76, 3624 (2000); https://doi.org/10.1063/1.126727.
T. Tatarchuk, N. Danyliuk, A. Shyichuk, V. Kotsyubynsky, I. Lapchuk, V. Mandzyuk, Green synthesis of cobalt ferrite using grape extract: the impact of cation distribution and inversion degree on the catalytic activity in the decomposition of hydrogen peroxide, Emergent Mater. 5, 89 (2022).
A.L. Tiano, G.C. Papaefthymiou, C.S. Lewis, J. Han, C. Zhang, Q. Li, C. Shi, A.M.M. Abeykoon, S.J.L. Billinge, E. Stach, J. Thomas, K. Guerrero, P. Munayco, J. Munayco, R.B. Scorzelli, P. Burnham, A.J. Viescas, S.S. Wong, Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles, Chem. Mater. 27, 3572 (2015); https://doi.org/10.1021/acs.chemmater.5b00767.
T. Tatarchuk, A. Shyichuk, V. Kotsyubynsky, N. Danyliuk, Catalytically active cobalt ferrites synthesized using plant extracts: Insights into structural, optical, and catalytic properties, Ceram. Int. 51, 4988 (2025); https://doi.org/https://doi.org/10.1016/j.ceramint.2024.11.470.
N. Colthup, Introduction to infrared and Raman spectroscopy, Elsevier, 2012.
D. Cozzolino, The Role of Visible and Infrared Spectroscopy Combined with Chemometrics to Measure Phenolic Compounds in Grape and Wine Samples, Molecules. 20, 726 (2015); https://doi.org/10.3390/molecules20010726.
M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87, 1051 (2015); https://doi.org/10.1515/pac-2014-1117.
D.H.K. Reddy, Y.-S. Yun, Spinel ferrite magnetic adsorbents: Alternative future materials for water purification?, Coord. Chem. Rev. 315, 90 (2016); https://doi.org/10.1016/J.CCR.2016.01.012.
M. Liaskovska, Adsorption Properties of Magnetic CoFe2O4 Based Spinel Nanoparticles, Nanomater. Nanocomposites, Nanostructures, Their Appl. (2024); https://doi.org/10.1007/978-3-031-67519-5_13.
C. Aoopngan, J. Nonkumwong, S. Phumying, W. Promjantuek, S. Maensiri, P. Noisa, S. Pinitsoontorn, S. Ananta, L. Srisombat, Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption, ACS Appl. Nano Mater. 2, 5329 (2019); https://doi.org/10.1021/acsanm.9b01305.
T. Tatarchuk, Studying the Defects in Spinel Compounds: Discovery, Formation Mechanisms, Classification, and Influence on Catalytic Properties, Nanomaterials. 14 (2024); https://doi.org/10.3390/nano14201640.
J. Hu, X. Zeng, G. Wang, B. Qian, Y. Liu, X. Hu, B. He, L. Zhang, X. Zhang, Modulating mesoporous Co3O4 hollow nanospheres with oxygen vacancies for highly efficient peroxymonosulfate activation, Chem. Eng. J. 400 125869 (2020); https://doi.org/https://doi.org/10.1016/j.cej.2020.125869.
M. Liaskovska, T. Tatarchuk, V. Kotsyubynsky, Green Synthesis of Cobalt–Zinc Ferrites and Their Activity in Dye Elimination via Adsorption and Catalytic Wet Peroxide Oxidation, Metals (Basel). 15 (2025); https://doi.org/10.3390/met15010044.
J. Kim, B.B. Sarma, E. Andrés, N. Pfänder, P. Concepción, G. Prieto, Surface Lewis Acidity of Periphery Oxide Species as a General Kinetic Descriptor for CO2 Hydrogenation to Methanol on Supported Copper Nanoparticles, ACS Catal. 9, 10409 (2019); https://doi.org/10.1021/acscatal.9b02412.
A. Zecchina, C. Lamberti, S. Bordiga, Surface acidity and basicity: General concepts, Catal. Today. 41, 169 (1998). https://doi.org/https://doi.org/10.1016/S0920-5861(98)00047-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mariia Liaskovska, Tetiana Tatarchuk, Volodymyr Kotsyubynsky

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




