Isothermal section of the Ho–Cu–Sn ternary system at 670 K

Array

Authors

  • L. Romaka Ivan Franko L’viv National University
  • I. Romaniv Ivan Franko National University of Lviv
  • V. Romaka Lviv Polytechnic National University
  • M. Konyk Ivan Franko National University of Lviv
  • A. Horyn Ivan Franko National University of Lviv
  • Yu. Stadnyk Ivan Franko National University of Lviv

DOI:

https://doi.org/10.15330/pcss.19.2.139-146

Keywords:

Intermetallics, Phase diagrams, X-ray diffraction, Crystal structure

Abstract

The interaction of the components in the Ho-Cu-Sn ternary system was investigated at 670 K over the whole concentration range using X-ray diffraction and EPM analyses. Four ternary compounds were formed in the Ho–Cu–Sn system at 670 K: HoCuSn (LiGaGe type, space group P63mc), Ho3Cu4Sn4 (Gd3Cu4Ge4-type, space group Immm), HoCu5Sn (CeCu5Au-type, space group Pnma), and Ho1.9Cu9.2Sn2.8 (Dy1.9Cu9.2Sn2.8-type, space group P63/mmc). The formation of the interstitial solid solution based on HoSn2 (ZrSi2-type) binary compound up to 5 at. % Cu was found.

References

[1] L. Romaka, I. Romaniv, Yu. Stadnyk, V.V. Romaka, R. Serkiz, R. Gladyshevskii, Chem. Met. Alloys 7, 132
(2014).
[2] Y. Zhan, H. Xie, J. Jiang, Y. Xu, Y. Wang, Y. Zhuang, J. Alloys Compd. 461, 570 (2008).
3. P. Riani, D. Mazzone, G. Zanicchi, R. Marazza, R. Ferro, F. Faudot, M. Harmelin, J. Phase Equilibria 3, 239 (1998).
[4] L.P. Komarovskaya, L.A. Mykhajliv, R.V. Skolozdra, Izv. АN SSSR. Metals 4, 209 (1989).
[5] P. Riani, D. Mazzone, G. Zanicchi, R. Marazza, R. Ferro, Intermetallics 8, 259 (2000).
[6] D. Mazzone, P.L. Paulose, S.K. Dhar, M.L. Fornasini, P. Manfrinetti, J. Alloys Compd. 453, 24 (2008).
[7] P. Riani, D. Mazzone, G. Zanicchi, R. Marazza, J. Alloys Compd. 247, 148 (1997).
[8] P. Riani, M.L. Fornasini, R. Marazza, D. Mazzone, G. Zanicchi, R. Ferro, Intermetallics 7, 835 (1999).
[9] I. V. Senkovska, Ya.S. Mudryk, L.P. Romaka, O.I. Bodak, J. Alloys Compd. 312, 124 (2000).
[10] L. Romaka, V.V. Romaka, E.K. Hlil, D. Fruchart, Chem. Met. Alloys 2(1,2), 68 (2009).
[11] O.I. Bodak, V.V. Romaka, L.P. Romaka, A.V. Tkachuk, Yu.V. Stadnyk, J. Alloys Compd. 395, 113 (2005).
[12] V. Romaka, Yu. Gorelenko, L. Romaka, Visnyk Lviv. Univ. Ser. Khim. 49, 3 (2008).
[13] G. Zanicchi, D. Mazzone, M.L. Fornasini, P. Riani, R. Marazza, R. Ferro, Intermetallics 7, 957 (1999).
[14] L. Romaka, V.V. Romaka, V. Davydov, Chem. Met. Alloys. 1(2), 192 (2008).
[15] L.P. Komarovskaya, S.A. Sadykov, R.V. Skolozdra, Izv. АN SSSR. Metals 33(8), 1249 (1988).
[16] S. Singh, M.L. Fornasini, P. Manfrinetti, A. Palenzona, S.K. Dhar, P.L. Paulose, J. Alloys Compd. 317-318, 560 (2001).
[17] R.V. Skolozdra, in: K.A. Gschneidner, Jr. and L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 24, 1997, 399 p.
[18] V.V. Romaka, L.P. Romaka, V.Ya. Krajovskyj, Yu.V. Stadnyk, Stannides of rare earth and transition metals, Lviv Polytech. Univ. 2015, 221 p.
[19] M.L. Fornasini, P. Manfrinetti, D. Mazzone, P. Riani, G. Zanicchi, J. Solid State Chem. 177, 1919 (2004).
[20] M.L. Fornasini, G. Zanicchi, D. Mazzone, P. Riani, Z. Kristallogr. 216(1), 21 (2001).
[21] Ya. Mudryk, O. Isnard, L. Romaka, D. Fruchart, Solid State Commun. 119, 423 (2001).
[22] V.V. Romaka, D. Fruchart, R. Gladyshevskii, P. Rogl, N. Koblyuk, J. Alloys Compd. 460, 283 (2008).
[23] A. Palenzona, P. Manfrinetti, J. Alloys Compd. 201, 43 (1993).
[24] M.L. Fornasini, F. Merlo. G.B. Bonino, Atti Accad. Naz. Lincei 50, 186 (1971).
[25] M.V. Bulanova, V.N. Eremenko, V.M. Petjukh, V.R. Sidorko, J. Phase Equil. 19, 136 (1998).
[26] X.C. Zhong, M. Zou, H. Zhang, Z. W. Liu, D.C. Zeng, K.A.Jr. Gschneidner, V.K. Pecharsky, J. Appl. Phys. 109, 07A917 (2011).
[27] J. Kim, J.-H. Jung, Calphad 55, 134 (2016).
[28] T.B. Massalski, in: Binary Alloy Phase Diagr., ASM, Metals Park, Ohio, 1990.
[29] P. Villars, L.D. Calvert, in: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM, Metals Park, OH, 1991.
[30] L. Akselrud, Yu. Grin, WinCSD: software package for crystallographic calculations (Version 4), J. Appl. Cryst. 47, 803 (2014).
[31] T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum 378–381, 118 (2001).
[32] M. Francois, G. Venturini, B. Malaman, B. Roques, J. less-Common Met. 160, 197 (1990).
[33] R.V. Skolozdra, V.M. Mandzyk, L.G. Aksel’rud, Sov. Phys. Crystallogr. (Engl. Transl.) 26, 272 (1981).
[34] M. Ruck, G. Portish, H.G. Schlager, M. Sieck, H. Lohneysen, Acta Crystallogr. B49 (1993) 936–941.
[35] C.P. Sebastian, C. Fehse, H. Eckert, R.D. Hoffmann, R. Pottgen, Solid State Sci. 8(11), 1386 (2006).
[36] J.P. Maehlen, M. Stange, V.A. Yartys', R.G. Delaplane, J. Alloys Compd. 404, 112 (2005).
[37] J.V. Pacheco, K. Yvon, E. Gratz, Z. Kristallogr. 213, 510 (1998).
[38] S. Baran, V. Ivanov, J. Leciejewicz, N. Stusser, A. Szytula, A. Zygmunt, Y.F. Ding, J. Alloys Compd. 257, 5 (1997).
[39] R. Pottgen, J. Alloys Compd. 243, L1 (1996).
[40] K. Katon, T. Takabatake, A. Minami, I. Oguro, H. Sawa, J. Alloys Compd. 261, 32 (1997).
[41] F. Yang, J.P. Kuang, J. Li, E. Brueck, H. Nakotte, F.R. de Boer, X. Wu, Z. Li, Y. Wang, J. Appl. Phys. 69(8), 4705 (1991).

Published

2019-05-02

How to Cite

Romaka, L., Romaniv, I., Romaka, V., Konyk, M., Horyn, A., & Stadnyk, Y. (2019). Isothermal section of the Ho–Cu–Sn ternary system at 670 K: Array. Physics and Chemistry of Solid State, 19(2), 139–146. https://doi.org/10.15330/pcss.19.2.139-146

Issue

Section

Review

Most read articles by the same author(s)

1 2 3 > >>