Quantum Magnetoresistance of GaPAs Whiskers
DOI:
https://doi.org/10.15330/pcss.23.3.468-472Keywords:
GaPAs whiskers, magnetoresistance, metal-insulated transition, sensor, cryogenic temperaturesAbstract
The magnetoresistance of GaPxAs1-x (x = 0…0.45) whiskers with doping concentration of silicon in the range from the deep dielectric side of metal-insulated transition (~1017 сm-3) to its critical concentration (Nc ~ 5´1018 сm-3) at cryogenic temperatures of 4.2¸77 K and magnetic field induction of 0¸14 T was studied. A negative magnetic resistance (NMR) with maximum value of 7 % was found at temperature 4.2 K and magnetic field 4.5 T, which is dependent on magnetic field induction and current direction. The NMR absolute value reduces with increasing temperature was observed in the transverse and longitudinal magnetoresistance. The nature of the revealed NMR effect was discussed in the studied samples. There are four possible reasons of the NMR effect in the GaPxAs1-x whiskers such as the dimensional quantization, the magnetic ordering of electron spins or magnetic ordering due to uncontrolled magnetic dopant introduction and quantum interference of the electron wave function. The GaPxAs1-x whisker application as the temperature sensor was proposed due to the studied results of the temperature dependence of their conductivity.
References
Z. Mi, Y.L. Chang, III-V compound semiconductor nanostructures on silicon: epitaxial growth, properties, and applications in light emitting diodes and lasers, Journal of Nanophotonics 3(1), 031602 (2009); https://doi.org/10.1117/1.3081051.
S. Xie, X. Zhou, S. Zhang, D. J. Thomson, X. Chen, G.T. Reed, C.H. Tan, InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product, Optics Express 24(21), 24242 (2016); https://doi.org/10.1364/OE.24.024242.
B. Amiri, A. Belghachi, H. Benslimane, A. Talhi, Potential of multiple-quantum well tandem solar cells based on GaPxAs1-x/GayIn1-yAs, Optik 147, 283 (2017); https://doi.org/10.1016/j.ijleo.2017.08.081.
V. Neplokh, V. Fedorov, A. Mozharov, F. Kochetkov, K. Shugurov, E. Moiseev, I. Mukhin, Red GaPAs/GaP Nanowire-Based Flexible Light-Emitting Diodes, Nanomaterials 11(10), 2549 (2021); https://doi.org/10.3390/nano11102549.
A.A. Druzhinin, I.P. Ostrovskii, Semiconductor whiskers for humidity sensors, Physics and Chemistry of Solid State 21(2), 227 (2020); https://doi.org/10.15330/pcss.21.2.227-231.
A. Abdollahi, M.M. Golzan, K. Aghayar, Electronic properties of GaPxAs1-x ternary alloy: A first-principles study, Journal of Alloys and Compounds 675, 86 (2016); https://doi.org/10.1016/j.jallcom.2016.03.101.
S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (John Wiley & Sons Ltd, Chichester, 2009).
P.P. Konorov, A.M. Yafyasov, V.B. Bogevolnov, Field Effect in Semiconductor-Electrolyte Interfaces: Application to Investigations of Electronic Properties of Semiconductor Surfaces (Princeton University Press, 2006).
A.A. Druzhinin, N.S. Liakh-Kaguy, I.P. Ostrovskii, Y.M. Khoverko, Magnetoresistance of GaP0.4As0.6 Whiskers in Vicinity of MIT, Journal of Nano-and Electronic Physics 11(4), 04007-1 (2019); https://doi.org/10.21272/jnep.11(4).04007.
L. Bellaiche, S.H. Wei, A. Zunger, Composition dependence of interband transition intensities in GaPN, GaAsN, and GaPAs alloys, Physical Review B 56(16), 10233 (1997); https://doi.org/10.1103/PhysRevB.56.10233.
E.A. Emelyanov, M. A. Putyato, B.R. Semyagin, A. Vasilenko, V.V. Preobrazhenskii, MBE growth of GaPxAs1−x and GaSbxAs1−x solid solutions with As2 or As4 molecular beam, 2010 11th International Conference and Seminar on Micro/Nanotechnologies and Electron Devices (IEEE, 2010), p. 109. https://doi.org/10.1109/EDM.2010.5568645.
I.V. Melnyk, Estimating of current rise time of glow discharge in triode electrode system in case of control pulsing, Radioelectronics and Communications Systems 56(12), 592 (2013); https://doi.org/10.3103/S0735272713120066.
I.V. Mel'nik, Radioelectronics and Communications Systems 48(6), 41 (2005); https://doi.org/10.3103/S0735272705060087.
A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, Spin-orbit coupling in strained Ge whiskers, Low Temperature Physics 45(11), 1182 (2019); https://doi.org/10.1063/10.0000124.
A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, K. Rogacki, Berry phase in strained InSb whiskers, Low Temperature Physics 44(11), 1189 (2018); https://doi.org/10.1063/1.5060974.
A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, Quantization in magnetoresistance of strained InSb whiskers, Low Temperature Physics 45(5), 513 (2019); https://doi.org/10.1063/1.5097360.
N.S. Liakh-Kaguy, A.A. Druzhinin, I.P. Ostrovskii, Y.M. Khoverko, Superconductivity and weak anti-localization in GaSb whiskers under strain, Low Temperature Physics 45(10), 1065 (2019); https://doi.org/10.1063/1.5125905.
A.A. Nikolaeva, L.A. Konopko, A.K. Tsurkan, E.P. Sinyavskii, O.V. Botnari, Effect of negative magnetoresistance in a transverse magnetic field in quantum Bi wires, Surface Engineering and Applied Electrochemistry 51(1), 46 (2015); https://doi.org/10.3103/S106837551501010X.
Y. Toyozawa, Theory of Localized Spins and Negative Magnetoresistance in the Metallic Impurity Conduction, Journal of the Physical Society of Japan 17(6), 986 (1962); https://doi.org/10.1143/JPSJ.17.986.
A.V. Kochura, B.A. Aronzon, M. Alam, A. Lashkul, S.F. Marenkin, M.A. Shakhov, E. Lahderanta, Magnetoresistance and anomalous hall effect of InSb doped with Mn, Journal of Nano-and Electronic Physics 5(4), 04015-1 (2013).
B.L. Altshuler, A.G. Aronov, CHAPTER 1 - Electron–Electron Interaction In Disordered Conductors, Modern Problems in Condensed Matter Sciences 10, p. 1 (1985); https://doi.org/10.1016/B978-0-444-86916-6.50007-7.
P.A. Lee, T.V. Ramakrishnan, Disordered electronic systems, Reviews of Modern Physics 57(2), 287 (1985); https://doi.org/10.1103/RevModPhys.57.287.