Spectroscopic, Magnetic and Morphological studies of MgFe2O4 Nanopowder
DOI:
https://doi.org/10.15330/pcss.24.2.392-402Keywords:
Spinel ferrite, Nanocrystalline, X-ray diffraction, Raman spectra, Magnetic propertiesAbstract
Spinel type nano ferrite compound MgFe2O4 was synthesized through sol gel technique using metal nitrates as precursors. The phase composition, morphology and elemental analysis of magnesium ferrite (MgFe2O4) were performed by X-ray diffraction, fourier transform infrared, atomic force microscopy, energy dispersive x-ray and scanning electron microscopy, analyses.
The sample's X-ray diffraction pattern verifies the existence of single phase material, with the size of its crystallites estimated to be 39.9 nm. Fourier transform infrared examination supported metal-oxygen vibrations corresponding to tetrahedral and octahedral sites, respectively. From scanning electron microscopy image, grain size obtained about 97.7 nm. Raman spectra of the sample shows five Raman active modes (A1g + Eg + 3F2g), which is compatible with the spinel structure. Magnetic measurement study at room temperature shows a hysteresis loop behaviour with a low saturation magnetization value, 27.192 emu g-1 and a small coercivity value. The optical band gap determined using UV-visible transmittance spectra. Additionally, X-ray photoelectron spectroscopy are used to confirm oxidation states and explore the chemical composition of the sample.
References
1. J. D Adam, L. E Davis, G. F.Dionne, E. F Schloemann, S. N. Stitzer, Ferrite Devices and Materials,IEEE
Transactions on Microwave Theory and Techniques, 50, 721 (2002); https://doi.org/10.1109/22.989957.
V.G. Harris,A. Geiler, Y. Chen, S.D. Yoon, W. Mingzhong, A. Yang, Z. Chen, H. Peng, V. Patanjali, X. Zuo, Parimi,ManasoriAbe, O. Acher and C.Vittoria, Recent advances in processing and applications of microwave Ferrites, Journal of Magnetism and Magnetic Materials, 321, 2035 (2009); https://doi.org/10.1016/j.jmmm.2009.01.004.
J. Balavijayalakshmi and Greeshma, Synthesis and Characterization of Magnesium ferrite nanoparticles by Co-precipitation method, Journal Environ. Nanotechnology, 2, 53 (2013), https://doi.org/10.13074/jent.2013.06.132015.
V.B. Kawade, G.K. Bichile and K.M. Jadhav, X-ray and infrared studies of chromium substituted magnesium,Material Letters 42, 33 (2000);https://doi.org/10.1016/S0167-577X(99)00155-X.
C.J. Kriessman and S.E. Harrison, Cation Distributions in Ferrospinels Magnesium-Manganese Ferrites, Physical Review, 103, 1 (1956); https://doi.org/10.1103/PhysRev.103.857.
E.W. Gorter. Magnetization in Ferrites: Saturation Magnetization of Ferrites with Spinel Structure, Nature, 165, 78 (1950); https://doi.org/10.1038/165798a0.
S.K. Pradhan, S. Bid, M. Gateshki and V. Petkov, Microstructure characterization and cation distribution nanocrystalline magnesium ferrite prepared by ball milling, Material Chemistry Physics, 93, 224 (2005); https://doi.org/10.1016/j.matchemphys.2005.03.017.
R.J. Willey, P. Noirclerc and G. Busca, Preparation and characteriation of magnesium chromite and magnesium aerogels. Chemical Engineering Communication, 123, 1 (2013); https://doi.org/10.1080/00986449308936161.
R. Dom , R. Subasri, K. Radha and P.H. Borse, Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation, Solid. State communication, 151, 470-473, (2011); https://doi.org/10.1016/j.ssc.2010.12.034.
C. Xiong, Q. Chen, W. Lu, H. Gao, W. Lu and Z. Gao, Novel Fe-based complex oxide catalysts for Hydroxylation of phenol, Catalysis Letters, 69, 231 (2000); https://doi.org/ 10.1023/A:1019042527870.
S.A. Oliver, R. J. Willey, H.H. Hamdeh,G. Oliveri ,G. Busca, Structure and magnetic properties of magnesium ferrite fine powder, Scripta Metallurgica et Materialia, 33, 1695 (1995); https://doi.org/10.1016/0956- 716X(95)00412-O.
R. Paulsingh and C. Venkataraju, Effect of calcinations on the structural and magnetic properties of magnesium ferrite nanoparticles prepared by sol gel method, Chinese Journal Physics, 56, 2218 (2018);https://doi.org/10.1016/j.cjph.2018.07.005.
A.Tariq , U. Ullah, I. Ahmad, M. Asif, I. Sadiq, H. Haleem.Comparative analysis of the Magnesium Ferrite (MgFe2O4) nanoparticles synthesized by three different routes. IET Nanobiotechnology, 137, 697 (2019); https://doi.org/10.1049/iet-nbt.2018.5032.
N.S Kumar, N. Das, K. Devlal, S. Seema, M.S. Shekhawat, M. Hidayath and A.S. Khader,Dielectric and Magnetic Studies of Ni-Mg Mixed ferrites by combustion Method,AIP Conference Proceeding, 2220, 1 (2020);https://doi.org/10.1063/5.0001907.
S.I. Hussein, A.S. Elkady, M.M. Rashad, A.G. Mostafa and R.M. Megahid, Structural and magnetic properties of magnesium ferrite nanoparticles prepared via EDTA-based sol–gel reaction, Journal of Magnetism and Magnetic Materials, 379, 9 (2015); https://doi.org/10.1016/j.jmmm.2014.11.079.
16. J.P. Singh, S.O. Won, W.C. Lim, I.J. Lee and K.H. Chae, Electronic structure studies of chemically synthesized MgFe2O4 nanoparticles, Journal Molecular Structures 1108, 444 (2016); https://doi.org/10.1016/j.molstruc.2015.12.002.
Y. He, X. Yang, J. Lin, Q. Lin and J. Dong. Mössbauer Spectroscopy, Structural and Magnetic Studies of Zn2+ Substituted Magnesium Ferrite Nanomaterials Prepared by Sol-Gel Method, Journal Nanomaterials, 1, 1 (2015); http://dx.doi.org/10.1155/2015/854840.
S. Thankachan, S. Xavier, B. Jacob and E.M. Mohammed, A comparative study of structural electrical and magnetic properties of magnesium ferrite nanoparticles synthesised by solgel and co- precipitation techniques.J. Exper. Nanosc. 8, 347 (2013); https://doi.org/10.1080/17458080.2012.690892.
R.P. Singh and Venkataraju, Effect of calcinations on the structural and magnetic properties of magnesium ferrite prepared by sol gel method, Chinese. J. Phys. 56, 2218 (2018); https://doi.org/10.1016/j.cjph.2018.07.005.
M. Kurain, S. Thankachan, D.S. Nair, E.K. Aswathy, A. BABU, A. Thomas and B.K Krisjna, Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods, Journal Advance Ceramic, 4, 199 (2015); https://doi.org/10.1007/s40145-015-0149-x.
S. Hasan, B. Azhdar, Facile synthesis of nanocrystalline zinc ferrite via a self propagatin combustion method Material Letters, 61, 347 (2007); https://doi.org/10.1016/j.matlet.2006.04.06.
S.Verma, P.A. Joy, Y.B. Khollam, H.S. Potdar and S.B. Deshpande, Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method, Material Letters58, 1092, (2004);https://doi.org/10.1016/j.matlet.2003.08.025.
K.K. Zeynep, R. Boncukcuoglu, I.H. Karakas and M. Ertugru, The effects of heat treatment on the synthesis of nickel ferrite (NiFe2O4) nanoparticles using the microwave assisted combustion method,Journal of Magnetism and Magnetic Materials, 298-306, (2015); https://doi.org/10.1016/j.jmmm.2014.08.045.
P. Holec, J. Plocek, D. Niznansky, Poltierova and J. Vejpravova. Preparation of MgFe2O4 nanoparticles by microemulsion method, J. Sol-Gel, ScienceTechnology, 51, 301 (2009); https://doi.org/10.1007/s10971-009-1962-x.
La Agusu, Alimin, L. O. Ahmad, M. Z. Firihu, S. Mitsudo, H. Kikuchi, Crystal and microstructure of MnFe2O4 synthesized by ceramic method using manganese ore and iron sand as raw materials, Journal Physics Conference, 1153, 1 (2019); https://doi.org/10.1088/1742-6596/1153/1/012056.
S. S. Jagtap, M.R. Sopan. Synthesis and characterization of Mg-Ni ferrite prepared by Sol gel autocumbustion method, Appl. Res. Devl. Inst. J. 8, 1, (2013);
A. Gaffoor , D. Ravinder. Characterization of Nano-Structured Nickel-Cobalt Ferrites Synthesized By Citrate- Gel Auto Combustion Method, Journal Engineering Res. Applied, 4, 73 (2014).
A.A Thant, S. Srimala, P. Kaung, M. Itoh, Radzali and M.N.A. Fauzi, Low temperature synthesis of MgFe2O4
soft ferrite nanocrystalline, Journal of Australian Ceramic Society, 46, 11, (2010);
N. Kaur and M. Kaur. Comparative studies on impact of synthesis methods on structural and magnetic
properties of magnesium ferrite nanoparticles Processing and Application of Ceramics 8, 137 (2014); https://doi.org/10.2298/PAC1403137K.
N. Sivakumara, A. Narayanasamya, J.M. Greneche, R. Murugaraj, Y.S, Leed. Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite, journal of alloys and compound, 504, 395 (2010); https://doi.org/10.1016/j.jallcom.2010.05.125.
K.B. Modi, M.K. Rangolia, M.C. Chhantbar and H.H. Joshi, Study of infrared spectroscopy and elastic properties of fine and coarse grained nickel–cadmium ferrites, Journal of Material Science,41, 7308 (2006); https://doi.org/10.1007/s10853-006-0929-3.
B.D. Cullity, Stock SR. Elements of X-Ray diffraction, 3rd ed. Hampshire (NJ), USA: Prentice Hall.167 (2006).
N. Farhana, H.K. Dubey, C. Verma, P. Lahiri, Structural and magnetic properties of MgFe2O4 Nanopowder synthesized via co precipitation route,SN Applied Science, 2, 808, (2020);https://doi.org/ 2611-9.
P.P. Hankare, V.T. Vader, N.M. Patil, SDJB Sankpal, M.R. Kadam, B.K. Chougule, N.S. Gajbhiye. Synthesis, characterization and studies on magnetic and electrical propertiesof Mg ferrite with Cr substitution, Material Chemistry Physics, 113, 233 (2009); https://doi.org/10.1016/j.matchemphys.2008.07.066.
A.T. Pathan, S.N. Mathad and A.M. Shaikh. Infrared spectral studies of nanostructured Co2+ substituted Li- Ni Zn ferrites, International Journal Self-Prop High Temp Synthesis, 3, 112 (2014);https://doi.org/10.3103/S1061386214020083.
E.D. Case, J.R. Smyth, V. Monthei. Grain size determinations, Journal American Ceramic Society, 64 24(1981).
R. Gupta, A.K. Sood, P. Metcalf and J.M. Honig, Raman study of stoichiometric and Zn-doped Fe3O4. Physics Review, B 65, 1 (2002); https://doi.org/10.1103/PhysRevB.65.104430.
L.V. Gasparov and D.B. Tanner, Infrared and Raman studies of the Verwey transition in magnetite, Journal American Physics, Society, 62 1-7, (1999); https://doi.org/10.1103/PhysRevB.62.7939.
G.V.M. Jacintho, A.G. Brolo, P. Corio, P.A.Z. Suarez and J.C. Rubim, Structural Investigation of MFe2O4 (M= Fe,Co) Magnetic Fluids,J. Phys. Chem. 113, 7684 (2009); https://doi.org/10.1021/jp9013477.
Z. Wang , P. Lazor , S.K. Saxena and HSC Neill, High pressure Raman spectroscopy of ferrite MgFe2O4. Material research Bulletin, 37, 1589 (2002); https://doi.org/10.1016/S0025-5408(02)00819-X.
41. J. Chandradass, A.H. Jadhav, K.H. Kim and H. Kim, Influence of processing methodology on the structural and magnetic behavior of MgFe2O4 nanopowders, Journal of Alloys Compound, 517, 164 (2012); https://doi.org/10.1016/j.jallcom.2011.12.071.
V. Sepelak, I. Bergmann, D. Menzel, A. Feldhoff, P. Heitjans, F.J. Litterst and K.D. Becker. Magnetization enhancement in nanosized MgFe2O4 prepared by mechanosynthesis, Journal of Magnetism and Magnetic Materials, 316, 764 (2007); https://doi.org/10.1016/j.jmmm.2007.03.087.
Y. Huang, Y. Tang, J. Wang and Q. Chen, Synthesis of MgFe2O4 nanocrystallites under mild conditions. Material Chemistry Physics, 97, 394 (2006); https://doi.org/10.1016/j.matchemphys.2005.08.035.
M.M. Rashad, Magnetic properties of nanocrystalline magnesium ferrite by co-precipitation assisted with ultrasound irradiation, Journal Material Science, 42, 5248 (2007);https://doi.org/10.1007/s10853-006-0389-9.
B. Viswanathan, V.R.K. Murthy, Ferrite Materials Science and Technology. I ed., Toppan company(s) Pte. Ltd, Singapore. 2-16, (1990).
M.A. Gabal, M. Reda, R.M. El-Shishtawy and Y.M. Al Angari, Structural and magnetic properties of nano-
crystalline Ni- Zn ferrites synthesized using egg-white precursor, Journal of Magnetism and Magnetic Materials324, 2258 (2012); https://doi.org/10.1016/j.jmmm.2012.02.112.
A.Pradeep, P. Priyadharsini, G. Chandrasekaran, Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study, Journal of Magnetism and Magnetic Materials, 320, 2774 (2008);https://doi.org/10.1016/j.jmmm.2008.06.012.
Y. Ichiyanagi, M. Kubota, S. Moritake, Y. Kanazawa, T. Yamada and T. Uehash, Magnetic properties of Mg Ferrite nanoparticles, Journal of Magnetism and Magnetic Materials, 310, 2378 (2007); https://doi.org/10.1016/j.jmmm.2006.10.737.
S. Rahman, K. Nadeem, M.A. Rehman, M. Mumtaz, S. Naeem, I.L. Papst, Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method, Ceramic International, 39, 5235 (2013); http://dx.doi.org/10.1016/j.ceramint.2012.12.023.
50. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, The effect of Mn substitution on the magnetic and dielectric properties of cobalt ferrite synthesized by an autocombustion, Smart. Material Structure18, 1 (2009); https://doi.org/10.1088/0964- 1726/18/11/115028.
S.K. Durrania, S. Naz, M. Mehmood, M. Nadeem and M. Siddique, Structural, impedance and Mössbauer studies of Magnesium ferrite synthesized via sol-gel auto- combustion Process, Journal Saudi Chemstry Society, 21, 1, (2017); https://doi.org/10.1016/j.jscs.2015.12.006.
C. Kumari, H.K. Dubey, F. Naaz, P. Lahiri, Structural and optical properties of nanosized Co substituted Ni ferrites by coprecipitation method,Phase Transition, 93, 1 (2020); https://doi.org/10.1080/01411594.2019.1709120.
G.D. Nipan, V.A. Ketsko, A.I. Stognij, A.V. Trukhanov, T.N. Koltsova, M.A. Kopeva, L.V. Elesina, N.T. Kuznetsov, Properties of Mg(Fe1 – xGax)2O4 Solid Solutions in Stable and Metastable States, Inorganic Material, 46, 490 (2010);
H.G. Kim, P.H. Borse, J.S. Jang, E.D. Jeong, O.S. Jung, Y.J. Suh, J.S. Lee, Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis Chemistry Communication, 39, 5889 (2009).
H. Xiang, X. Peng, D. Xu, X. Yang, G. Ren, Z. Zhang, Y. Zhong and X. Wang. One-pot solvent-free synthesis of MgFe2O4 nanoparticles from ferrous sulfate waste, Material and Manufacturing Processes, 35,590 (2020); https://doi.org/10.1016/j.mtcomm.2020.101516.
V.K. Mittal, S. Bera, R. Nithya, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, Solid State Synthesis of Mg– Ni Ferrite and Characterization by XRD and XPS,Journal Nuclear Material, 335, 302 (2004);http://dx.doi.org/10.1016%2Fj.jnucmat.2004.05.010.