The influence of hydrostatic pressure on the synthesis of colloidal core-shell quantum dots with the mismatch of lattice parameters
DOI:
https://doi.org/10.15330/pcss.25.3.435-440Keywords:
core-shell quantum dot, hydrostatic pressure, nucleationAbstract
The theory of the synthesis of colloidal quantum dots of the core-shell type with the mismatch of lattice parameters of the contacting materials which are subjected to additional external hydrostatic pressure has been developed. The proposed model takes into account the influence of hydrostatic pressure on the homogeneous nucleation of the shell material and its heteroepitaxial growth on the core surface. Within the framework of the developed model, the regularities of change in the homogeneous nucleation of colloidal ZnS nanoparticles, that is the material of the shell, and the heteroepitaxial growth of the ZnS shell on the CdSe core under the action of external pressure have been established. It was found that such hydrostatic pressure complicates the homogeneous formation of nanoparticles of the shell material (increases the critical radius, at exceeding which the growth of nanoparticles and the potential barrier for their nucleation are possible) and, on the contrary, practically does not change the conditions of heteroepitaxial growth of the shell on the core.
References
Z. Wang, Yu. Gu, F. Liu, W. Wu, Facile synthesis of wide bandgap ZrS2 colloidal quantum dots for solution processed solar-blind UV photodetectors, Chemical Communications, 59(92), 13771 (2023); (https://doi.org/10.1039/d3cc03594h).
K. Agarwal, H. Rai, S. Mondal, Quantum dots: an overview of synthesis, properties, and applications, Mater. Res. Express, 10, 062001 (2023); (https://doi.org/10.1088/2053-1591/acda17).
U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels, Nature Methods, 5(9), 763 (2008); (https://doi.org/10.1038/nmeth.1248).
B. Gidwani, V. Sahu, S.S. Shukla, R. Pandey, V. Joshi, Quantum dots: Prospectives, toxicity, advances and applications, Journal of Drug Delivery Science and Technology, 61, 102308 (2021); (https://doi.org/10.1016/j.jddst.2020.102308).
S. Filali, F. Pirot, P. Miossec, Biological Applications and Toxicity Minimization of Semiconductor Quantum Dots, Trends in Biotechnology, 38(2), 163 (2020); (https://doi.org/10.1016/j.tibtech.2019.07.013).
A. Sahu, D. Kumar, Core-shell quantum dots: A review on classification, materials, application, and theoretical modeling, Journal of Alloys and Compounds, 924, 166508 (2022); (https://doi.org/10.1016/j.jallcom.2022.166508).
J. Li, H. Zheng, Z. Zheng, H. Rong, Z. Zeng, H. Zeng, Synthesis of CdSe and CdSe/ZnS Quantum Dots with Tunable Crystal Structure and Photoluminescent Properties, Nanomaterials, 12, 2969 (2022); (https://doi.org/10.3390/nano12172969).
J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X. Peng, Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction, J. Am. Chem. Soc., 125(41), 12567 (2003); (https://doi.org/10.1021/ja0363563).
O. Kuzyk, O. Dan’kiv, I. Stolyarchuk, R. Peleshchak, The deformation effects in isovalent doping of CdSe quantum dots with a multilayer shell for their biomedical applications, Appl Nanosci., 13, 7007 (2023); (https://doi.org/10.1007/s13204-023-02830-5).
H.S. Pisheh, N. Gheshlaghi, H. Ünlü, The effects of strain and spacer layer in CdSe/CdS/ZnS and CdSe/ZnS/CdS core/shell quantum dots, Physica E: Low-dimensional Systems and Nanostructures, 85, 334 (2017); (https://doi.org/10.1016/j.physe.2016.07.007).
M.H. Entezari, N. Ghows, Micro-emulsion under ultrasound facilitates the fast synthesis of quantum dots of CdS at low temperature, Ultrasonics Sonochemistry, 18(1), 127 (2011); (https://doi.org/10.1016/j.ultsonch.2010.04.001).
D. Kashchiev, Multicomponent nucleation: Thermodynamically consistent description of the nucleation work, J. Chem. Phys., 120, 3749 (2004); (https://doi.org/10.1063/1.1643711).
N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of Nucleation and Growth of Nanoparticles in Solution, Chem. Rev., 114(15), 7610 (2014); (https://pubs.acs.org/doi/10.1021/cr400544s).
O.V. Kuzyk , O.O. Dan’kiv, R.M. Peleshchak, І.D. Stolyarchuk, Baric properties of CdSe-core / ZnS/CdS/ZnS-multilayer shell quantum dots, Physica E: Low-dimensional Systems and Nanostructures, 143, 115381 (2022); (https://doi.org/10.1016/j.physe.2022.115381).
C.G. van de Walle, Band lineups and deformation potentials in the model-solid theory, Phys. Rev. B., 39(3), 1871 (1989); (https://doi.org/10.1103/PhysRevB.39.1871).
J. Johansson, Heteroepitaxial growth modes revisited, CrystEngComm, 25, 6671 (2023); (https://doi.org/10.1039/D3CE00664F).
L. Carbonea, P.D. Cozzoli, Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms, Nano Today, 5, 449 (2010); (https://doi.org/10.1016/j.nantod.2010.08.006).
O. Kuzyk, O. Dan’kiv, R. Peleshchak, I. Stolyarchuk, The deformation of spherical CdSe quantum dot with a multilayer shell, Rom J Phys., 67, 607 (2022); (https://rjp.nipne.ro/2022_67_5-6/RomJPhys.67.607.pdf).
D. Vollath, F.D. Fischer, D. Holec, Surface energy of nanoparticles – influence of particle size and structure, Beilstein J. Nanotechnol., 9, 2265 (2018); (https://doi.org/10.3762/bjnano.9.211).
B. Li, K. Bian, X. Zhou, P. Lu, S. Liu, Pressure compression of CdSe nanoparticles into luminescent nanowires, Sci. Adv., 3(5), 1 (2017); (https://doi.org/10.1126/sciadv.1602916).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 O.V. Kuzyk, O.O. Dan'kiv, I.D. Stolyarchuk, R.M. Peleshchak, Yu.O. Uhryn, V.A. Kuhivchak
This work is licensed under a Creative Commons Attribution 3.0 Unported License.