Graphene-Based Hall Sensors: Materials and Production Approaches
DOI:
https://doi.org/10.15330/pcss.26.2.296-306Keywords:
Graphene, Hall sensor, Two-dimensional materials, Graphene-based devices, Sensor fabricationAbstract
Graphene remains one of the most studied materials due to its unique physical properties and two-dimensional structure. The article examines the current state of the graphene market, which is growing at a rapid pace, with a projected volume of USD 1.5 billion by 2027. Technologies for the production of graphene Hall sensors are discussed, in particular, the chemical vapor deposition (CVD) method, which is widely used to create industrial sensors. An important role in the properties of the sensors is played by the choice of the substrate, which can be both rigid (silicon, sapphire) and flexible (polyimide). Attention is paid to metal-graphene contacts, where edge contacts have significantly better conductivity than surface contacts. The authors emphasize that at the current stage of development of graphene electronics, there is no single technological process, as in the classical semiconductor industry, which requires further research to create more efficient sensors.
References
M.A. Al Faruque, M. Syduzzaman, J. Sarkar, K. Bilisik, M. Naebe, A review on the production methods and applications of graphene-based materials, Nanomaterials, 11(9), 2414 (2021); https://doi.org/10.3390/nano11092414.
R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, F. Zamora, 2D materials: To graphene and beyond, Nanoscale, 3, 20 (2011); https://doi.org/10.1039/C0NR00323A.
S.E. Taher, J.M. Ashraf, K. Liao, R.K. Abu Al-Rub, Mechanical properties of graphene-based gyroidal sheet/shell architected lattices, Graphene and 2D Mater., 8, 161 (2023); https://doi.org/10.1007/s41127-023-00066-2.
C.Y. Sung, IBM Graphene Nanoelectronics Technologies (IBM T.J. Watson Research Center, Science & Technology Strategy Department, 2015); [Online]. Available: https://www.nist.gov/system/files/documents/pml/div683/conference/Sung.pdf.
D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found, Nature, 453, 80 (2008); https://doi.org/10.1038/nature06932.
Samsung wykorzystuje grafen do ladowania baterii, Nanonet, Aug. 13, 2020; [Online]. Available: https://nanonet.pl/samsung-wykorzystuje-grafen-do-ladowania-baterii/.
J. Tsai, J. Tsai, Samsung, LG pushing investments in graphene for semiconductors and home appliances, DIGITIMES Asia, Jul. 24, 2023; [Online]. Available: https://www.digitimes.com/news/a20230724PD207/automotive-ic-graphene-lg-samsung.html.
A. Frick, Bosch breakthrough in graphene sensor technology, Graphene Flagship, Chalmers University of Technology (2015); [Online]. Available: https://graphene-flagship.eu/materials/news/bosch-breakthrough-in-graphene-sensor-technology/.
Paragraf - Graphene-based Electronics; [Online]. Available: https://www.paragraf.com/.
Graphenea - Graphene Production and Applications; [Online]. Available: https://www.graphenea.com/.
General Graphene Corporation; [Online]. Available: https://generalgraphenecorp.com/.
T. Schmaltz, L. Wormer, U. Schmoch, H. Doscher, Graphene Roadmap Briefs (No. 3): meta-market analysis 2023, 2D Materials, 11(2), 022002 (2024); https://doi.org/10.1088/2053-1583/ad1e78.
K. Sowery, Applied Nanolayers’ graphene is approaching sun synchronous orbit, Electronic Specifier, Apr. 7, 2022; [Online]. Available: https://www.electronicspecifier.com/industries/industrial/applied-nanolayers-graphene-is-approaching-sun-synchronous-orbit.
R. Biliak, Methods of obtaining graphene, Computational Problems of Electrical Engineering, 13(1), 1 (2023); https://doi.org/10.23939/jcpee2023.01.001.
N. Shah, V. Iyer, Z. Zhang, Z. Gao, J. Park, V. Yelleswarapu, F. Aflatouni, A.T.C. Johnson, D. Issadore, Highly stable integration of graphene Hall sensors on a microfluidic platform for magnetic sensing in whole blood, Microsystems & Nanoengineering, 9, article no. 71 (2023); https://doi.org/10.1038/s41378-023-00460-7.
I. Bolshakova, M. Strikha, Ya. Kost, F. Shurygin, Dependence of maximal sensitivity of the magnetic field Hall sensors based on graphene on temperature, Sensor Electronics and Microsystem Technologies, 18(3), 29 (2021); https://doi.org/10.18524/1815-7459.2021.3.241056.
Z. Wang, M. Shaygan, M. Otto, D. Schall, D. Neumaier, Flexible Hall sensors based on graphene, Nanoscale, 8(14), 7683 (2016); https://doi.org/10.1039/c5nr08729e.
B. Uzlu, Z. Wang, S. Lukas, M. Otto, M.C. Lemme, D. Neumaier, Gate-tunable graphene-based Hall sensors on flexible substrates with increased sensitivity, Scientific Reports, 9, 18059 (2019); https://doi.org/10.1038/s41598-019-54375-6.
Z. Wang, L. Banszerus, M. Otto, K. Watanabe, T. Taniguchi, C. Stampfer, D. Neumaier, Encapsulated graphene-based Hall sensors on foil with increased sensitivity, Physica status solidi (b), published (Jun. 6, 2016); https://doi.org/10.1002/pssb.201600224.
D. Izci, C. Dale, N. Keegan, J. Hedley, The construction of a graphene Hall effect magnetometer, IEEE Sensors Journal, 18(23), 9534 (2018); https://doi.org/10.1109/JSEN.2018.2872604.
H. Xu, L. Huang, Z. Zhang, B. Chen, H. Zhong, Flicker noise and magnetic resolution of graphene Hall sensors at low frequency, Applied Physics Letters, 103(11), 112405 (2013); https://doi.org/10.1063/1.4821270.
T. Ciuk, R. Kozlowski, A. Romanowska, A. Zagojski, K. Pietak-Jurczak, B. Stanczyk, K. Przyborowska, D. Czolak, P. Kaminski, Defect-engineered graphene-on-silicon-carbide platform for magnetic field sensing at greatly elevated temperatures, Carbon Trends, 13, 100303 (2023); https://doi.org/10.1016/j.cartre.2023.100303.
T. Ciuk, O. Petruk, A. Kowalik, I. Jozwik, A. Rychter, J. Szmidt, W. Strupinski, Low-noise epitaxial graphene on SiC Hall effect element for commercial applications, Applied Physics Letters, 108(22), 223504 (2016); https://doi.org/10.1063/1.4953258.
T. Dai, H. Xu, S. Chen, Z. Zhang, High performance Hall sensors built on chemical vapor deposition-grown bilayer graphene, ACS Omega, 7(29), 25644 (2022); https://doi.org/10.1021/acsomega.2c02864.
I. Bolshakova, D. Dyuzhkov, Ya. Kost, M. Radishevskiy, F. Shurigin, A. Vasyliev, 7th International Conference on Nanomaterials: Application & Properties (NAP), (Sumy State University, Sumy, 2017) pp 1-4; https://doi.org/10.1109/NAP.2017.8190226.
S. El-Ahmar, M.J. Szary, T. Ciuk, R. Prokopowicz, A. Dobrowolski, J. Jagiello, M. Ziemba, Graphene on SiC as a promising platform for magnetic field detection under neutron irradiation, Applied Surface Science, 590, 152992 (2022); https://doi.org/10.1016/j.apsusc.2022.152992.
L. Fan, J. Bi, K. Xi, X. Yang, Y. Xu, L. Ji, Impact of γ-ray irradiation on graphene-based Hall sensors, IEEE Sensors Journal, 21(14), 16100 (2021); https://doi.org/10.1109/JSEN.2021.3075691.
A. Tyagi, L. Martini, Z.M. Gebeyehu, V. Miseikis, C. Coletti, Highly sensitive Hall sensors based on chemical vapor deposition graphene, ACS Applied Nano Materials, 7(16), 18329 (2023); https://doi.org/10.1021/acsanm.3c03920.
A. Dankert, B. Karpiak, S.P. Dash, Hall sensors batch-fabricated on all-CVD h-BN/graphene/h-BN heterostructures, Scientific Reports, 7, article no. 15231 (2017); https://doi.org/10.1038/s41598-017-12277-8.
T. Shen, J.J. Gu, M. Xu, Y.Q. Wu, M.L. Bolen, M.A. Capano, L.W. Engel, P.D. Ye, Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001), Applied Physics Letters, 95(17), 172105 (2009); https://doi.org/10.1063/1.3254329.
T. Ciuk, A. Kozlowski, P.P. Michalowski, W. Kaszub, M. Kozubal, Z. Rekuc, J. Podgorski, B. Stanczyk, K. Przyborowska, I. Jozwik, A. Kowalik, P. Kaminski, Thermally activated double-carrier transport in epitaxial graphene on vanadium-compensated 6H-SiC as revealed by Hall effect measurements, Carbon, 139, 776 (2018); https://doi.org/10.1016/j.carbon.2018.07.049.
A. Kaidarova, W. Liu, L. Swanepoel, A. Almansouri, N.R. Geraldi, C.M. Duarte, J. Kosel, Flexible Hall sensor made of laser-scribed graphene, npj Flexible Electronics, 5, 2 (2021); https://doi.org/10.1038/s41528-021-00096-7.
B.T. Schaefer, L. Wang, A. Jarjour, K. Watanabe, T. Taniguchi, P.L. McEuen, K.C. Nowack, Magnetic field detection limits for ultraclean graphene Hall sensors, Nature Communications, 11, article no. 4163 (2020); https://doi.org/10.1038/s41467-020-17922-8.
J. Dauber, A.A. Sagade, M. Oellers, K. Watanabe, T. Taniguchi, D. Neumaier, C. Stampfer, Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride, Applied Physics Letters, 106, 193501 (2015); https://doi.org/10.48550/arXiv.1504.01625.
T.M. Radadiya, The graphene sensor technology, International Journal of Science and Research (IJSR), 4(4), 1–5 (2015).
S. Goniszewski, M. Adabi, O. Shaforost, S.M. Hanham, L. Hao, N. Klein, Correlation of p-doping in CVD graphene with substrate surface charges, Scientific Reports, 6, article no. 22858 (2016); https://doi.org/10.1038/srep22858.
J.P. Mensing, T. Lomas, A. Tuantranont, 2D and 3D printing for graphene-based supercapacitors and batteries: A review, Sustainable Materials and Technologies, 25, e00190 (2020); https://doi.org/10.1016/j.susmat.2020.e00190.
H. Xu, L. Huang, Z. Zhang, B. Chen, H. Zhong, L.-M. Peng, Flicker noise and magnetic resolution of graphene Hall sensors at low frequency, Applied Physics Letters, 103(11), 112405 (2013); https://doi.org/10.1063/1.4821270.
L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, C.R. Dean, One-dimensional electrical contact to a two-dimensional material, Science, 342(6158), 614 (2013); https://doi.org/10.1126/science.1244358.
F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, P. Avouris, The origins and limits of metal–graphene junction resistance, Nature Nanotechnology, 6, 179 (2011); https://doi.org/10.1038/nnano.2011.6.
S. Russo, M.F. Craciun, M. Yamamoto, A.F. Morpurgo, S. Tarucha, Contact resistance in graphene-based devices, Physica E: Low-dimensional Systems and Nanostructures, 42(4), 677 (2010); https://doi.org/10.1016/j.physe.2009.11.080.
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of Modern Physics, 81(1), 109 (2009); https://doi.org/10.1103/RevModPhys.81.109.
W. Liu, J. Wei, X. Sun, H. Yu, A study on graphene—metal contact, Crystals, 3(1), 257 (2013); https://doi.org/10.3390/cryst3010257.
M. Politou, I. Asselberghs, I. Radu, T. Conard, O. Richard, C.S. Lee, K. Martens, S. Sayan, C. Huyghebaert, Z. Tokei, S. De Gendt, M. Heyns, Transition metal contacts to graphene, Applied Physics Letters, 107(15), 153104 (2015); https://doi.org/10.1063/1.4933192.
A. Gahoi, S. Wagner, A. Bablich, S. Kataria, V. Passi, M.C. Lemme, Contact resistance study of various metal electrodes with CVD graphene, Solid-State Electronics, 125, 234 (2016); https://doi.org/10.1016/j.sse.2016.07.008.
T. Cusati, G. Fiori, A. Gahoi, V. Passi, M.C. Lemme, A. Fortunelli, G. Iannaccone, Electrical properties of graphene-metal contacts, Scientific Reports, 7(1), article no. 5109 (2017); https://doi.org/10.1038/s41598-017-05069-7.
F. Giubileo, A. Di Bartolomeo, The role of contact resistance in graphene field-effect devices, Progress in Surface Science, 92(3), 143 (2017); https://doi.org/10.48550/arXiv.1705.04025.
H. Xu, Z. Zhang, R. Shi, H. Liu, Z. Wang, S. Wang, L.-M. Peng, Batch-fabricated high-performance graphene Hall elements, Scientific Reports, 3, article no. 1207 (2013); https://doi.org/10.1038/srep01207.
R.S. Popovic, Hall Effect Devices, 2nd ed. (CRC Press, Boca Raton, 2003); https://doi.org/10.1201/NOE0750308557.
D. Collomb, P. Li, S. Bending, Frontiers of graphene-based Hall-effect sensors, Journal of Physics: Condensed Matter, 33(24), 243002 (2021); https://doi.org/10.1088/1361-648X/abf7e2.
Z.B. Cavdar, C. Yanik, E.E. Yildirim, L. Trabzon, T.C. Karalar, Separated terminal 2D Hall sensors with improved sensitivity, Sensors and Actuators A: Physical, 324, 112550 (2021); https://doi.org/10.1016/j.sna.2021.112550.
R.H.J. Vervuurt, W.M.M. Kessels, A.A. Bol, Atomic layer deposition for graphene device integration, Advanced Materials Interfaces, 4(18), article no. 1700232 (2017); https://doi.org/10.1002/admi.201700232.
M. Crescentini, S.F. Syeda, G.P. Gibiino, Hall-effect current sensors: Principles of operation and implementation techniques, IEEE Sensors Journal, 22(11), 10137 (2022); https://doi.org/10.1109/JSEN.2022.3172153.
V. Mosser, N. Matringe, Y. Haddab, A spinning current circuit for Hall measurements down to the nanotesla range, IEEE Transactions on Instrumentation and Measurement, 66(4), 637 (2017); https://doi.org/10.1109/TIM.2017.2653224.
Graphene Supermarket, Graphene Laboratories Inc.; [Online]. Available: https://www.graphene-supermarket.com.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R.V. Biliak, N.S. Liakh-Kaguy, Y.Y. Kost

This work is licensed under a Creative Commons Attribution 3.0 Unported License.




