On a complete topological inverse polycyclic monoid

Authors

  • S.O. Bardyla Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine
  • O.V. Gutik Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine
https://doi.org/10.15330/cmp.8.2.183-194

Keywords:

inverse semigroup, bicyclic monoid, polycyclic monoid, free monoid, semigroup of matrix units, topological semigroup, topological inverse semigroup, minimal topology
Published online: 2016-12-30

Abstract

We give sufficient conditions when a topological inverse $\lambda$-polycyclic monoid $P_{\lambda}$ is absolutely $H$-closed in the class of topological inverse semigroups. For every infinite cardinal $\lambda$ we construct the coarsest semigroup inverse topology $\tau_{mi}$ on $P_\lambda$ and give an example of a topological inverse monoid $S$ which contains the polycyclic monoid $P_2$ as a dense discrete subsemigroup.

Article metrics
How to Cite
(1)
Bardyla, S.; Gutik, O. On a Complete Topological Inverse Polycyclic Monoid. Carpathian Math. Publ. 2016, 8, 183-194.