Notes on the tangent bundles over $F$-Kählerian manifolds

Authors

  • N.E.H. Djaa Relizane University, 48000 Relizane, Algeria https://orcid.org/0000-0002-0568-0629
  • A. Gezer Atatürk University, 25240 Erzurum, Türkiye
  • A. Zagane Relizane University, 48000 Relizane, Algeria
https://doi.org/10.15330/cmp.17.2.550-564

Keywords:

horizontal lift, vertical lift, geodesic, harmonic map
Published online: 2025-12-19

Abstract

Let $TM$ be the tangent bundle over an $F$-Kählerian manifold endowed with Berger type deformed Sasaki metric $g_{BS}$. In this paper, we obtain the Levi-Civita connection of this metric and study geodesics on the tangent bundle $TM$ and $F$-unit tangent bundle $T_{1,F}M.$ Secondly, we characterize the geodesic curvatures on $T_{1,F}M$. Finally, we present some conditions for a vector field $\xi :M\rightarrow TM$ to be harmonic and study the harmonicity of the canonical projection $\pi :TM\rightarrow M$. In addition, we search the harmonicity of the Berger type deformed Sasaki metric $g_{BS}$ and the Sasaki metric $g_{S}$ with respect to each other.

Article metrics
How to Cite
(1)
Djaa, N.; Gezer, A.; Zagane, A. Notes on the Tangent Bundles over $F$-Kählerian Manifolds. Carpathian Math. Publ. 2025, 17, 550-564.