Influence of quantum dot shape on energy spectra of three-dimensional quantum dots superlattices
DOI:
https://doi.org/10.15330/pcss.21.4.584-590Keywords:
superlattice, quantum dot, form of quantum dot, electron spectrum, zone widthAbstract
The band spectrum of quantum dots superlattices of different shapes at points of high symmetry is determined. Cubic, cylindrical and spherical quantum dots are considered. The width of the minizone is calculated. The dependences of the minizones on the geometric dimensions of quantum dots and their concentration are established.
References
D.J. Mowbray and M.S. Skolnick, J. Phys. D: Appl. Phys. 38, 2059 (2005) (https://doi.org/10.1088/0022-3727/38/13/002).
M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K.Otsubo, T. Yamamoto, and Y. Nakata, J. Phys. D: Appl. Phys. 38, 2126 (2005) (https://doi.org/10.1088/0022-3727/38/13/008).
A. Moritz, R. Wirth, A. Hangleiter, A. Kurtenbach, and K. Eberl, Appl.Phys. Lett. 69, 212 (1996) (https://doi.org/10.1063/1.117375).
N. Kirstaedter, N.N. Ledentsov, M. Grundmann, D. Bimberg, V.M. Ustinov, S.S. Ruvimov, M.V. Maximov, P.S. Kopev, Z.I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, Electron. Lett. 30, 1416 (1994).
J.P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvilli, G. Eisenstein, M. Gioannini, I. Montrosset, T.W. Berg, M. van der Poel, J. Mørk, and B. Tromberg, J. Phys. D: Appl. Phys. 38, 2088 (2005).
D. Pan, E. Towe, and S. Kennerly, Appl. Phys. Lett. 73, 1937 (1998) (https://doi.org/10.1063/1.122328).
S. Maimon, E. Finkman, G. Bahir, S. E. Schacham, J. M. Garcia, and P.M. Petroff, Appl. Phys. Lett. 73, 2003 (1998) (https://doi.org/10.1063/1.122349).
E.T. Kim, Z.H. Chen, and A. Madhukar, Appl. Phys. Lett. 79, 3341 (2001) (https://doi.org/10.1063/1.1417513).
L. Fu, P. Lever, K. Sears, H.H. Tan, and C. Jagadish, IEEE Electron Device Lett. 26, 628 (2005).
W. Zhang, H. Lim, M. Taguchi, S. Tsao, B. Movaghar, and M. Razeghi,Appl. Phys. Lett. 86, 191103 (2005) (https://doi.org/10.1063/1.1923176).
M.R.K. Vahdani, G. Rezaei. Phys. Lett. A, 373, 3079 (2009) (https://doi.org/10.1016/j.physleta.2009.06.042).
P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, Annu. Rev. Mater.Res. 34, 1 (2004).
V.I. Boichuk, I.V. Bilynsky, I.O. Shakleina. Ukr. J. Phys. 53, 894 (2008).
V.A. Gaisin, S.W. Karpov, E.V. Kolobkova, B.V. Novikov, V.D. Petrikov, А.А. Lipovsky, D.L. Fedorov, M.Ya.Yastrubova. Solid State Physics 41, 8 (1999).
J.H. Blokland, M. Bozkurt, J.M. Ulloa, D. Reuter, A.D. Wieck, P.M. Koenraad, P.C.M. Christianen and J.C. Maan. Applied Physics Letters 94, 023107 (2009) (https://doi.org/10.1063/1.3072366).
V. Kladko, M. Slobodian, P. Lytvyn, V. Strelchuk, Yu. Mazur, E. Marega, M. Hussein and G. Salamo. Phys. Status Solidi A 206, 1748 (2009) (https://doi.org/10.1002/pssa.200881593).
Y. Yakar, B. Cakır, A. Ozmen. Optics Communications 283, 1795 (2010) (https://doi.org/10.1016/j.optcom.2009.12.027).
Shu-Shen Li, Jian-Bai Xia, Z.L. Yuan, Z.Y. Xu. China. Effective-mass theory for InAs/GaAs strained coupled quantum dots 912, 100083 (1996) (https://doi.org/10.1103/PhysRevB.54.11575).
R.Ya. Leshko, I.V. Bilynskyi, Physica E: Low-dimensional Systems and Nanostructures 110, 10 (2019) (https://doi.org/10.1016/j.physe.2019.01.024).
R.Ya. Leshko, I.V. Bilynskyi, Physica E: Low-dimensional Systems and Nanostructures 115, 113703 (2020) (https://doi.org/10.1016/j.physe.2019.113703).