Hole States in Spherical Quantum Nanoheterosystem with Intermediate Spin-Orbital Interaction
DOI:
https://doi.org/10.15330/pcss.20.3.227-233Keywords:
quantum don, hole spectrum, 6-band modelAbstract
The hole energy spectrum has been studied for the spherical semiconductor nanoheterosystem with the cubic symmetry. The exact solutions of the Schrödinger equation for the ground and excited hole states are presented within the framework of the 6-band Luttinger Hamiltonian and the finite gap of bands with the corresponding boundary conditions. Dependence of the holes energies from the radius of the quantum dot has been calculated for the GaAs/AlAs heterostructure. Obtained results where compared with data obtained using the infinite potential well model, as well as the single-band model for heavy and light holes.
References
V. Sivasubramanian, A.K. Arora, M. Premila, C.S. Sundar, V.S. Sastry, Physica E 31(1), 93 (2006). (http://dx.doi.org/10.1016/j.physe.2005.10.001).
P. Ardalan, T.P. Brennan, H.-B.-R. Lee, J.R. Bakke, I-K. Ding, M.D. McGehee,S.F. Bent, ACS Nano 5(2), 1495 (2011) (http://dx.doi.org/10.1021/nn103371v).
K.-L. Chou, H. Meng, Y. Cen, L. Li, J.-Y. Chen, J. Nanopart. Res. 15, 1348 (2012) (http://dx.doi.org/10.1007/s11051-012-1348-9).
L. Shao, Y. Gao, F. Yan, Semiconductor quantum dots for biomedical applications, Sensors 11, 11736 (12) 11736-11751. (http://dx.doi.org/10.3390/s111211736).
T. Pons, H. Mattoussi, Ann. Biomed. Eng. 37(10),1934 (2009) (http://dx.doi.org/10.1007/s10439-009-9715-0).
J.C.C. Santos, A.A.P. Mansur, H.S. Mansur, Molecules 18(6), 6550 (2013) (http://dx.doi.org/10.3390/molecules18066550).
A.I. Ekimov, I.A. Kudryavtsev, M.G. Ivanov, Al.L. Efros, J. Lumin. 46(2), 83 (1990). (http://dx.doi.org/10.1016/0022-2313(90)90010-9).
N.A. Efremov, S.I. Pokutnii, Solid State Phys. 32(10), 2921 (1990).
S.I. Pokutnii, Semiconductors 31(12), 1247 (1997). (http://dx.doi.org/10.1134/1.1187305).
V.I. Klimov, J. Phys. Chem. B 104 (26), 6112 (2000) (http://dx.doi.org/10.1021/jp9944132).
N.V. Tkach, Yu.A. Sety, Semiconductors 40(9), 1083 (2006) (http://dx.doi.org/10.1134/S106378260609017X).
N.V. Tkach, Yu.A. Seti, Phys. Solid State 51(5), 1033 (2009) (http://dx.doi.org/10.1134/S1063783409050230).
M. Bissiri, G. Baldassari H.v.H., M. Capizzi,V.M. Fomin, V.N. Gladilin and J.T. Vreese, Phys.status solidi (b) 224(3), 639 (2001). (https://doi.org/10.1002/(SICI)1521-3951(200104)224:3<639::AID-PSSB639> 3.0.CO;2-1).
V.I. Boichuk, I.V. Bilynskyi, I.O. Shakleina, V.B. Holskyi, Condensed Matter Physics 13(1), 1370 (2010). (10.5488/CMP.13.13701).
V.I. Boichuk, I.V. Bilynskyi, R.Ya. Leshko, L.M. Turyanska, Physica E: Low-dimensional Systems and Nanostructures 44, 476 (2011) (10.1016/j.physe.2011.09.025).
[16] V.I. Boichuk, R.Ya. Leshko, I.V. Bilynskyi, L.M. Turyanska, Condensed Matter Physics, 2012, vol. 15, No. 3, 33702:1-10 (https://doi.org/10.5488/CMP.15.33702 )
V.I. Boichuk, I.V. Bilynskyi, R.Ya. Leshko, L.M. Turyanska, Physica E: Low-dimensional Systems and Nanostructures 54, 281 (2013) (10.1016/j.physe.2013.07.003).
C. Hermann, C. Weisbuch, Phys. Rev. B 15(2), 823 (1977) (http://dx.doi.org/10.1103/PhysRevB.15.823).
A. Baldereschi, N.O. Lipary, Phys. Rev. B 8(6), 2697 (1973) (http://dx.doi.org/10.1103/PhysRevB.8.2697).
G.B. Grigoryan, E.M. Kazaryan, Al.L. Efros, T.B. Yazeva, Solid State Phys. 32(6), 1722 (1990) (Russian).
В.І. Шека, Д.І. Шека, ЖЕТФ 51(5), 1445 (1967).
D.J. Ben Daniel and C.B. Duke, Phys. Rev. 152, 683 (1966).
V.I. Boichuk, I.V. Bilynskyi, R.Ya. Leshko, I.O. Shakleyina, Ukrainian Journal of Physics 55(3), 326 (2010).