Development of Thermal Detector Based on Flexible Film Thermoelectric Module

  • O.B. Kostyuk Ivano-Frankivsk National Medical University
  • B.S. Dzundza Vasyl Stefanyk Precarpathian National University
  • Ya.S. Yavorsky Vasyl Stefanyk Precarpathian National University
  • Z.M. Dashevsky Ben-Gurion University
Keywords: Bi2Te3, PbTe, thermal detectors, thermoelectric properties, thin films

Abstract

Thermal detectors find a significant niche in the market of modern sensors. Bi2T3 and PbTe semiconductors are effective thermoelectrics and excellent candidates for different applications. In the present work, a technology for fabrication of p-Bi0.5Sb1.5Te3 and n-PbTe films with the high thermoelectric efficiency on thin flexible polyimide substrate has been developed. The preparation of films was performed by flash evaporation method. The high sensitivity of the devices is due to the high Seebeck coefficient of 200 mV/K and reduction of thermal conductivity of thin thermoelectric film from the bulk value. The devices operate in the Johnson-Nyquist noise limit of the thermocouple. The performance enables fast and sensitive detection of low levels of thermal power and infrared radiation at room temperature.

References

A. Rogalski, Infrared Detectors (CRC Press, 2010) (https://doi.org/10.1201/b10319).

A. Rogalski, Prog. Quantum Electron. 27, 59 (2003) (https://doi.org/10.1016/s0079-6727(02)00024-1).

H.J. Goldsmid, Introduction to thermoelectricity (Springer-Verlag, Berlin, 2016).

D.M. Rowe, Thermoelectric handbook: Macro to Nano (CRC Press, 2005).

S. Oualid, F. Kosior, A. Dauscher, C. Candolfi, G. Span, E. Mehmedovic, J. Paris, B. Lenoir, Energy & Environmental Science 13(10), 3579 (2020) (https://doi.org/10.1039/d0ee02579h).

Z. Dashevsky, The applications of lead chalcogenides in thermoelectric devices. Lead chalcogenides: physics and application. Edited by D. Khokhlov (Talor&Francis, New York, 2003).

A. Varpula, A.Timofeev, A. Shchepetov, K. Grigoras, J. Hassel, J. Ahopelto, M. Ylilammi, M. Prunnila, Appl. Phys. Lett. 110, 262101 (2017) (https://doi.org/10.1063/1.4989683).

B.M. Goltsman, B.A. Kudinov, I.A. Smirnov, Semiconductor Thermoelectric Materials Based on Bi2Te3 (Nauka, Moskow, 1972).

Yu.I. Ravich, B.A. Efimova, I.A. Smirnov, Semiconducting Lead Chalcogenides (Plenum Press, New York, 1970).

A.P. Goncalves, C. Godart, Alternative strategies for thermoelectric materials development. in New Materials for Thermoelectric Applications: Theory and Experiment edited by V. Zlatic, A. Hewson (Springer, New York, 2013).

J. Herremans, B. Wiendliocha, Tetradymites: Bi2Te3-related materials, in: C Uher (Ed.), Materials Aspect of Thermoelectricity, (CRS Press, Boca Raton, 2016).

O. Ben-Yehuda, R. Shuker, Y. Gelbstein, Z. Dashevsky, M.P. Dariel, J. Appl. Phys. 101, 113707 (2007) (https://doi.org/10.1063/1.2743816).

I.V. Horichok, T.O. Parashchuk, J. Appl. Phys 127, 055704 (2020) (https://doi.org/10.1063/1.5130747).

B.M. Goltzman, Z.M. Dashevsky, V.I. Kaydanov, N.V. Kolomoetz, Film thermoelements: physics and application (Nauka, Moscow, 1985).

L. Silva, M. Kaviany, C. Uher, J. Appl. Phys. 97, 114903 (2005) (https://doi.org/10.1063/1.1914948).

E. Symeou, M. Pervolaraki, C.N. Mihailescu, at. el., Appl. Surf. Sci. 336, 138 (2015) (https://doi.org/10.1016/j.apsusc.2014.10.038).

D. Bourgault, C.G. Garampon, N. Caillault, L. Carbone, J.A. Aymami, Thin Solid Films 516, 8579 (2008) (https://doi.org/10.1016/j.tsf.2008.06.001).

Z. Dashevsky, A. Belenchuk, O. Shapoval, E. Gartstein, Thin Solid Films. 461, 256 (2004) (https://doi.org/10.1016/j.tsf.2004.01.087).

A. Jdanov, J. Pelleg, Z. Dashevsky, R Shneck, Materials Science and Engineering B. 106, 89 (2004) (https://doi.org/10.1016/j.mseb.2003.09.026).

T. Parashchuk, L. Chernyak, S. Nemov, Z. Dashevsky, Physica Status Solidi (b), 257(12), 2000304 (2020) (https://doi.org/10.1002/pssb.202000304).

Z. Dashevsky and S. Skipidarov. Investigating the Performance of Bismuth - Antimony Telluride in Novcgel Materials and Device Design Concepts// edited by M. Nikitin and S. Skipidarov (Springer, New York, 2019).

R. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, C. Wolverton, C. Uher, M.G. Kanatzidis, X. Tang, Energy Environ. Sci 6, 1520 (2018) (https://doi.org/10.1039/c8ee00290h).

I.T. Witting, J.A. Grovogui, V.P. Dravid, G.J. Snyder, J. of Materiomics 6, 532 (2020) (https://doi.org/10.1016/j.jmat.2020.04.001).

T. Parashchuk, O. Kostyuk, L. Nykyruy, Z. Dashevsky, Mater Chem Phys. 253, 123427 (2020) (https://doi.org/10.1016/j.matchemphys.2020.123427).

T. Parashchuk, Z. Dashevsky, K. Wojciechowski, J. Appl. Phys. 125 245103 (2019) (https://doi.org/10.1063/1.5106422).

B. Dzundza, L. Nykyruy, T. Parashchuk, E. Ivakin, Y. Yavorsky, L. Chernyak, Z. Dashevsky, Physica B 588, 412178 (2020) (https://doi.org/10.1016/j.physb.2020.412178).

K. Wojciechowski, T. Parashchuk, B. Wiendlocha, O. Cherniushok, Z. Dashevsky, Journal of Materials Chemistry C, 8, 13270 (2020) (https://doi.org/10.1039/d0tc03067h).

Published
2021-02-24
How to Cite
[1]
KostyukO., DzundzaB., YavorskyY. and DashevskyZ. 2021. Development of Thermal Detector Based on Flexible Film Thermoelectric Module. Physics and Chemistry of Solid State. 22, 1 (Feb. 2021), 45-52. DOI:https://doi.org/10.15330/pcss.22.1.45-52.
Section
Scientific articles