The Properties of Synthesized Graphene and Polychlorotrifluoroethylene – Graphene systems

Authors

  • S.M. Makhno Chuiko Institute of Surface Chemistry of the NAS of Ukraine
  • G.M. Gunya Chuyko Institute of Surface Chemistry NAS of Ukraine
  • Yu.I. Sementsov Chuyko Institute of Surface Chemistry NAS of Ukraine
  • Yu.V. Grebelna Chuyko Institute of Surface Chemistry NAS of Ukraine
  • M.T. Kartel Chuyko Institute of Surface Chemistry NAS of Ukraine
  • O.M. Lisova Chuyko Institute of Surface Chemistry NAS of Ukraine

DOI:

https://doi.org/10.15330/pcss.17.3.421-425

Keywords:

graphene, complex dielectric permeability, composites, conductivity

Abstract

The properties of composites based on polychlorotryfluoroene with graphene containing 5 % (wt.) obtained by electrochemical dispergasion of graphite electrodes were researched. It is shown that the conductivity of the initial graphene that is determined by the impedance spectroscopy method is caused by the mainly electronic component. The concentration dependence of conductivity at low frequencies and real and imaginary components of the complex dielectric permeability at a frequency of 9 GHz composites significantly changes in the concentration range of 0,25-1%, that is stimulated by the presence of percolation threshold with graphene content of 0,45 %. The critical indexes of the percolation theory were calculated for the system.

References

[1] W.-W. Liu, S.-P. Chai, A.R. Mohamed, U Hashim, Journal of Industrial and Engineering Chemistry 20, 1171 (2014).
[2] Y. Zhao, X. Li, B. Yan, Journal of Power Sources 274, 869 (2015).
[3] E. Roy, S. Patra, D. Kumar, Biosensor and Bioelectronics 68, 726 (2015).
[4] A.V. Melezhyk, A.A. Chuyko, Khym. tekhnolohyya 2, 3 (1992).
[5] N.O. Weiss, H. Zhou, L. Liao, Adv. Mater. 24(43), 5782 (2012).
[6] P.B. Sorokyn, L.A. Chernozatonskyy, Uspekhy fyzycheskykh nauk 183(2), 113 (2013).
[7] Y. Sun, Q. Wu, G. Shi, Energy Environ. Sci. 4(4), 1113 (2011).
[8] S. Zhu-Yin, H. Bao-Hang, Carbon 82, 590 (2015).
[9] P. Sun, M. Zhu, K. Wang, ACS Nano7, 428 (2012).
[10] A. Bagri1, C. Mattevi, M. Acik, Nature Shemistry. 2, 581 (2010).
[11] M. Segal, Nat. Nanotechnol. 4 (10), 612 (2009).
[12] F.W. Low, C.W. Lain, S.B. Hamid, Ceramics International 41, 5798 (2015).
[13] S. Nardecchia, D. Carriazo, M.L. Ferrer, Chem. Soc. Rev. 42, 794 (2013).
[14] L.M. Hanyuk, V.D. Ihnatkov, S.M Makhno., P.M. Soroka, Ukr. fiz. zhurn. 40(6), 627 (1995).
[15] V.H. Shevchenko, A.T. Ponomarenko, Uspekhy khymyy LII (8), 1336 (1983).
[16] G.C. Psarras, E.C. Manolakaki, G.M. Tsangaris, Composites: Part A. 33, 375 (2002).
[17] C. Botas, P. Lvarez, P. Blanco, M. Granda, C. Blanco, R. Santamara, L.J. Romasanta, R. Verdejo, M.A. Lo´pez-Manchado, R. Mendez, Carbon. 65, 156 (2013).
[18] S.M. Makhno, Khimiya, fizyka ta tekhnolohiya poverkhni 6(3), 372 (2015).

Published

2016-09-15

How to Cite

Makhno, S., Gunya, G., Sementsov, Y., Grebelna, Y., Kartel, M., & Lisova, O. (2016). The Properties of Synthesized Graphene and Polychlorotrifluoroethylene – Graphene systems. Physics and Chemistry of Solid State, 17(3), 421–425. https://doi.org/10.15330/pcss.17.3.421-425

Issue

Section

Scientific articles