The influence of a permanent magnetic field on the crystallization of calcium carbonate from carbonate aqueous solutions

Authors

  • V.R. Gayevskii National University of Water and Environmental Engineering, Rivne, Ukraine
  • B.D. Nechyporuk Rivne State University of Humanities, Rivne, Ukraine
  • S.G. Gayevska Rivne Scientific Research Forensic Center of the Ministry of Internal Affairs of Ukraine, Rivne, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.4.616-622

Keywords:

magnetic treatment, crystallization of calcium carbonate, carbonate water system, electrolyte solutions, Debye-Hückel theory, approximation method, XRD, Debye-Scherrer method

Abstract

The effect of a permanent magnetic field on the crystallization of calcium carbonate from carbonate aqueous solutions was studied. Based on the equations for the first- and second-order dissociation constants of carbonic acid, the stability constants of NaCO3- and NaHCO30 complexes, the mass balance and electroneutrality equations, the values of the system components and the ratio between the components of the carbonate subsystem were determined, and it was established that the main species in experimental conditions are СО32-, NaСО3- and HСО3- and the main components of the carbonate subsystem are СО32- (86.7%) and HСО3- (13.19%). Studies have shown that with a significant excess of CO32- over HCO3- ions in the solution at temperatures of 18-20˚C, calcite and vaterite are most likely formed. During the crystallization of calcium carbonate from an aqueous carbonate solution in a magnetic field of 125-250 mT, the size of the crystallites increases significantly compared to the absence of a magnetic field.

References

T. Vermeiren, Magnetic Treatment of Liquids for Scale and Corrosion Prevention, Anti-Corrosion Methods and Materials 5(7), 215 (1958); https://doi.org/10.1108/eb019464.

V.R. Gayevskii, V.Z. Kochmarskii. Increasing the efficiency of reversible cooling systems by minimizing calcium carbonate deposits. Monograph. NUVHP. Rivne (2018) ISBN 978-966-327-383-9 http://ep3.nuwm.edu.ua/id/eprint/15612.

V.R.Gayevskii, V.Z.Kochmarskii, S.G.Gayevska. Nucleation and crystal growth of calcium sulfate dihydrate from aqueous solutions: Speciation of solution components, kinetics of growth, and interfacial tension. Journal of Crystal Growth 548, 125844 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125844.

V.R. Gayevskii, V.Z. Kochmarskii, S.H. Gayevska Surface energy and structure of nuclei during crystallization of calcium sulfate dihydrate from aqueous solutions, Ukrainian Journal of Physics 66(8), 708 (2021); https://doi.org/10.15407/ujpe66.8.708.

V.R. Gayevskii, V.L. Fylypchuk, O.Yu. Dejneka, The influence of contamination of heat exchange surfaces of steam turbine condensers on the amount of nitrogen dioxide emissions, Ukrainian Journal of Construction and Architecture 5(011), 27 (2022); https://doi.org/10.30838/J.BPSACEA.2312.251022.27.88.

A. Yashchenok, B. Parakhonskiy, S. Donatan, D. Kohler, A. Skirtach, H. Mӧhwalda. Polyelectrolyte multilayer microcapsules templated on spherical, elliptical and square calcium carbonate particles, Journal of Materials Chemistry B. J. Mater. Chem. B 1(9), 1223 (2013); https://doi.org/10.1039/c2tb00416j.

V.Z. Kochmarskii, V.R. Gayevskii, O.V. Kochmarskyi, S.G. Nechiporuk, Study of the influence of the magnetic field on the process of crystallization of САСО3 from hydrocarbonate systems (HCS), Bulletin of the NUVHP 2(46), 234 (2009).

D.R. Lide, ed., CRC Handbook of Chemistry and Physics, 90th Edition (CD-ROM Version 2010), CRC Press/Taylor and Francis, Boca Raton, FL. ISBN-13: 978-1420090840, ISBN-10: 1420090844.

V.Z. Kochmarskii, V.R. Gayevskii, N.L. Tyshko Crystallization of calcium carbonate from hydrocarbonate solutions, Ukrainian Journal of Physics 62(5), 382 (2017); https://doi.org/10.15407/ujpe62.05.0382.

V.R. Gajevskiy, Electrical conductivity of aqueous solutions of carbon dioxide, Ukrainian Journal of Physics 60(3), 259 (2015); https://doi.org/10.15407/ujpe60.03.0258.

H.S. Harned, B.B. Owen, The physical chemistry of electrolytic solutions. Reinhold, New York (1967) OCLC Number / Unique Identifier:989635388.

D.G. Peters, J.M. Hayes, G. M. Hieftje, Chemical Separations and Measurements. Theory and Practice of Analytical Chemistry. W. B. Saunders Co. (1974) ISBN-13: ‎978-0721672038.

E.O. Mykhailova, M.O. Moroz, O.L. Sincheskull. Chemical precipitation of calcium carbonate of various crystal modifications, Bulletin of NTU "KhPI". Series: Chemistry, chemical technology and ecology 48(1269), 68 – 73 (2017). ISSN 2079-0821.

L.I. Mirkin. Reference book on X-ray structural analysis of polycrystals / sub. ed. prof. Ya.S. Umansky/ M. (1961).

V.I. Lysoivan, Measurement of unit cell parameters on a single-crystal spectrometer. Novosibirsk: Nauka, (1982).

A. Achour, A. Arman, M. Islam, A.A. Zavarian, A. Basim Al-Zubaidi, J. Szade Synthesis and characterization of porous CaCO3 micro/nano-particles, Eur. Phys. J. Plus 132, 267 (2017); https://doi.org/10.1140/epjp/i2017-11531-8.

Gen-Tao Zhou, Jimmy C. Yu, Xin-Chen Wang and Li-Zhi Zhang. Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies, New. J. Chem. 28, 1027 (2004); https://doi.org/10.1039/B315198K.

Mehrdad Khatami, Hajar Q. Alijani, Farideh Mousazadeh, Nooshin Hashemi, Zahra Mahmoudi, Samaneh Darijani, Mehdi Bamorovat, Alireza Keyhani, Meghdad Abdollahpour-Alitappehe and Fariba Borhani. Calcium carbonate nanowires: greener biosynthesis and their leishmanicidal activity, RSC Adv. 10, 38063 (2020); https://doi.org/10.1039/D0RA04503A.

V.R. Gaevs'kyi, B.D. Nechyporuk, N.Yu. Novoselets'kyi, B.P. Rudyk, Electrolytic Fabrication of Zinc Oxide Nanoparticles, Ukr. J. Phys. 58 (4), 385 (2013); https://doi.org/10.15407/ujpe58.04.0385.

N.B. Danilevska, M.V. Moroz, M.Yu. Novoseletskyi, B.D. Nechiporuk, BP Rudyk. The influence of technological modes on the physical properties of zinc oxide nanocrystals obtained by the electrolytic method, Journal of physical research 20(3), 3601-1 (2016,); https://doi.org/10.30970/jps.20.3601.

P. Scherrer. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgensrahlen [Determination of the size and internal structure of colloidal particles using X-rays]. Nachr Ges Wiss Goettingen, Math-Phys Kl.; 98 (1918) German. http://resolver.sub.uni-goettingen.de/purl?GDZPPN002505045.

Published

2023-11-20

How to Cite

Gayevskii, V., Nechyporuk, B., & Gayevska, S. (2023). The influence of a permanent magnetic field on the crystallization of calcium carbonate from carbonate aqueous solutions. Physics and Chemistry of Solid State, 24(4), 616–622. https://doi.org/10.15330/pcss.24.4.616-622

Issue

Section

Scientific articles (Chemistry)

Most read articles by the same author(s)