Density of states and interband light absorption in Y2O3 and Sc2O3 thin films Array

Main Article Content

O.M. Bordun
I.O. Bordun
I.M. Kofliuk
I.Yo. Kukharskyy
I.I. Medvid

Abstract

The long-wavelength edge of the fundamental absorption band of thin Y2O3 and Sc2O3 films obtained by the method of discrete evaporation in vacuum is investigated. On the basis of its temperature dependence, the excitons - phonon interaction is investigated, which made it possible to interpret the absorption edge as the absorption of self-trapped excitons. To analyze the experimental results, we used a model of a heavily doped or defective semiconductor in the quasi-classical approximation. The use of this model made it possible to estimate the radius of the ground electronic state a and the screening radius rS  and the concentration of free charge carriers N in the films under study.


 

Article Details

How to Cite
Bordun, O., Bordun, I., Kofliuk, I., Kukharskyy, I., & Medvid, I. (2022). Density of states and interband light absorption in Y2O3 and Sc2O3 thin films : Array. Physics and Chemistry of Solid State, 23(1), 40–44. https://doi.org/10.15330/pcss.23.1.40-44
Section
Scientific articles (Physics)

References

T. Wiktorczyk, P. Bieganski and J. Serafinczuk, Optical Materials 59, 150 (2016); https://doi.org/10.1016/j.optmat.2015.12.012.

M.S. Lebedev, V.N. Kruchinin, M.Yu. Afonin, I.V. Korolkov, A.A. Saraev,A.A. Gismatulin and V.A. Gritsenko, Applied Surface Science 478, 690 (2019); https://doi.org/10.1016/j.apsusc.2019.01.288.

Ch. Hua, Ch. Li, J. Guo, X. Yan, J. Liu, L. Chen, J. Wei and L. Hei, Surface & Coatings Technol. 320, 279 (2017); https://doi.org/10.1016/j.surfcoat.2017.01.004.

H.N. Hersh, Phys. Rev. 148(2), 928 (1966); https://doi.org/10.1103/PhysRev.148.928.

D. F. Bezuidenhout and R. Pretorius, Thin Solid Films 139 (2), 121 (1986); https://doi.org/10.1016/0040-6090(86)90330-5.

V.H. Mudavakkat, V.V. Atuchin, V.N. Kruchinin, A. Kayani and C.V. Ramana, Optical Materials 34(5), 893 (2012); https://doi.org/10.1016/j.optmat.2011.11.027.

O. M. Bordun & I. M. Bordun, J. Appl. Spectrosc. 64(5), 663 (1997); https://doi.org/10.1007/BF02675330.

O. M. Bordun, I. O. Bordun and I. Yo. Kukharskyy, J. Appl. Spectrosc. 79(6), 982 (2013); https://doi.org/10.1007/s10812-013-9711-x.

F. Urbach, Phys. Rev. 92(5), 1324 (1953); https://doi.org/10.1103/PhysRev.92.1324.

M.V. Kurik, Phys. Stat. Sol. A 8(1), 9 (1971); https://doi.org/10.1002/pssa.2210080102.

Е. Johnson, Optical properties of semiconductors. Semiconductor compounds of the AIIIBV type (Mir, Moskva,1970). (in Russian).

M.M. Batenchuk, L.G. Volzhenskaya, Yu.V. Zorenko and M.V. Pashkovsky, Phys. electron. 29, 32 (1984) (in Russian)

A. Anderson, Application of Raman spectra (Mir, Moskva, 1977) (in Russian).

M.V. Couric, Fiz. Tverd. Tela 3(2), 615 (1991) (in Russian).

A.L. Efros, Uspechi Fizicheskich Nauk 111, 451 (1973) (in Russian).

О.М. Bordun, Phys. and Chem. of Solids 1(2), 235 (2000) (in Ukrainian).

O. M. Bordun, I. O. Bordun and I. Yo. Kukharskyy, J. Appl. Spectrosc. 82(3), 390 (2015); https://doi.org/10.1007/s10812-015-0118-8.

N. D. Dovga, Phys. electron. 33, 86 (1986) (in Russian).

O.M. Bordun, B.O. Bordun, I.Yo. Kukharskyy and I.I. Medvid, J. Appl. Spectrosc. 88(2), 257 (2021); https://doi.org/10.1007/s10812-021-01166-8.

B.F. Ormont, Introduction to Physical Chemistry and Crystal Chemistry of Semiconductors (Vysshaya shkola, Moskva, 1973). (in Russian).

Most read articles by the same author(s)