On the domain of convergence of general Dirichlet series with complex exponents

Keywords:
domain of convergence, abscissa of convergence, Dirichlet seriesAbstract
Let (λn) be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series F(z)=+∞∑n=0anezλn, z∈C, we denote Gμ(F), Gc(F), Ga(F) the domains of the existence, of the convergence and of the absolute convergence of maximal term μ(z,F)=max{|an|eℜ(zλn):n≥0}, respectively. It is well known that Gμ(F),Ga(F) are convex domains.
Let us denote N1(z):={n:ℜ(zλn)>0}, N2(z):={n:ℜ(zλn)<0} and α(1)(θ):=lim_n→+∞n∈N1(eiθ)−ln|an|ℜ(eiθλn),α(2)(θ):=¯limn→+∞n∈N2(eiθ)−ln|an|ℜ(eiθλn). Assume that an→0 as n→+∞. In the article, we prove the following statements.
1) If α(2)(θ)<α(1)(θ) for some θ∈[0,π) then {teiθ:t∈(α(2)(θ),α(1)(θ))}⊂Gμ(F) as well as {teiθ:t∈(−∞,α(2)(θ))∪(α(1)(θ),+∞)}∩Gμ(F)=∅.
2) Gμ(F)=⋃θ∈[0,π){z=teiθ:t∈(α(2)(θ),α(1)(θ))}.
3) If h:=lim_n→+∞−ln|an|lnn∈(1,+∞), then (hh−1⋅Ga(F))⊃Gμ(F)⊃Gc(F). If h=+∞ then Ga(F)=Gc(F)=Gμ(F), therefore Gc(F) is also a convex domain.