On the domain of convergence of general Dirichlet series with complex exponents

Authors

  • M.R. Kuryliak Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine
  • O.B. Skaskiv Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine
https://doi.org/10.15330/cmp.15.2.594-607

Keywords:

domain of convergence, abscissa of convergence, Dirichlet series
Published online: 2023-12-30

Abstract

Let (λn) be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series F(z)=+n=0anezλn, zC, we denote Gμ(F), Gc(F), Ga(F) the domains of the existence, of the convergence and of the absolute convergence of maximal term μ(z,F)=max{|an|e(zλn):n0}, respectively. It is well known that Gμ(F),Ga(F) are convex domains.

Let us denote N1(z):={n:(zλn)>0}, N2(z):={n:(zλn)<0} and α(1)(θ):=lim_n+nN1(eiθ)ln|an|(eiθλn),α(2)(θ):=¯limn+nN2(eiθ)ln|an|(eiθλn). Assume that an0 as n+. In the article, we prove the following statements.

1) If α(2)(θ)<α(1)(θ) for some θ[0,π) then {teiθ:t(α(2)(θ),α(1)(θ))}Gμ(F) as well as {teiθ:t(,α(2)(θ))(α(1)(θ),+)}Gμ(F)=.

2) Gμ(F)=θ[0,π){z=teiθ:t(α(2)(θ),α(1)(θ))}.

3) If h:=lim_n+ln|an|lnn(1,+), then (hh1Ga(F))Gμ(F)Gc(F). If h=+ then Ga(F)=Gc(F)=Gμ(F), therefore Gc(F) is also a convex domain.

How to Cite
(1)
Kuryliak, M.; Skaskiv, O. On the Domain of Convergence of General Dirichlet Series With Complex Exponents. Carpathian Math. Publ. 2023, 15, 594-607.