On the abscises of the convergence of multiple Dirichlet series

Authors

  • O.Yu. Zadorozhna Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine
  • O.B. Skaskiv Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine

Keywords:

multiple Dirichlet series, abscises of the convergence of multiple Dirichlet series
Published online: 2009-12-30

Abstract

For multiple Dirichlet series of the form $F(s)=\sum_{\|n\|=0}^\infty a_{(n)}\exp\{(\lambda_{(n)},s)\}$ we establish relations between domains of the convergence $G_c$, absolutely convergence $G_a$ and of the domain of the existence of the maximal term $G_{\mu}$ of the series as follows: $\gamma G_{c}\subset G_{a}+\delta_0 e_{1},\ \gamma G_{\mu}\subset G_{a}+\delta_0 e_{1},$ where $e_{1}=(1,\dots,1)\in \mathbb{R}^p, \;\; \delta_0\in \mathbb{R},$ by condition $ \varliminf\limits_{\|n\|\to\infty} \frac{(\gamma-1)\ln\,|a_{(n)}|+\delta_0\|\lambda_{(n)}\|}{\ln\|n\|}>p;$ $\gamma G_c\subset G_a+\delta; \;\; \gamma G_{\mu}\subset G_a+\delta,$ where $\delta\in\mathbb{R}^{p},$ by condition $\varliminf\limits_{\|n\|\to\infty} \frac{(\gamma-1)\ln\,|a_{(n)}|+(\delta,\lambda_{(n)})}{\ln\,n_1+...+\ln\,n_p}>1.$

How to Cite
(1)
Zadorozhna, O.; Skaskiv, O. On the Abscises of the Convergence of Multiple Dirichlet Series. Carpathian Math. Publ. 2009, 1, 152-160.