$r$-Subhypermodules over Krasner hypermodules

Authors

  • M. Bolat Department of Mathematics, Yildiz Technical University, Istanbul, Türkiye
  • E. Kaya Department of Mathematics and Science Education, Istanbul Sabahattin Zaim University, Istanbul, Türkiye
  • S. Onar Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Türkiye
  • B.A. Ersoy Department of Mathematics, Yildiz Technical University, Istanbul, Türkiye
  • K. Hila Department of Mathematical Engineering, Polytechnic University of Tirana, Tirana, Albania
https://doi.org/10.15330/cmp.17.1.246-254

Keywords:

$r$-hyperideal, $r$-subhypermodule, prime subhypermodule
Published online: 2025-06-30

Abstract

In this study, we introduce the notion of $r$-subhypermodule of an $\mathcal{R}$-hypermodule, where $\mathcal{R}$ is a commutative Krasner hyperring. A proper subhypermodule $N$ of $M$ is said to be an $r$-subhypermodule if $a\cdot m\in N$ with $ann_{M}(a)=0_{M}$ implies that $m\in N$ for each $a\in\mathcal{R}$, $m\in M$. We investigate the relations between the concept of prime subhypermodules and $r$-subhypermodules. We also give some results about $r$-subhypermodules.

Article metrics
How to Cite
(1)
Bolat, M.; Kaya, E.; Onar, S.; Ersoy, B.; Hila, K. $r$-Subhypermodules over Krasner Hypermodules. Carpathian Math. Publ. 2025, 17, 246-254.