Experimental study of Hf-Cu-Sn ternary system at 870 K

Authors

  • L. Romaka Ivan Franko National University of Lviv, Lviv, Ukraine
  • V.V. Romaka Institute for Solid State Research, IFW-Dresden, Dresden, Germany
  • Yu. Stadnyk Ivan Franko National University of Lviv, Lviv, Ukraine
  • A. Horyn Ivan Franko National University of Lviv, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.3.485-491

Keywords:

intermetallics, phase diagrams, X-ray diffraction, crystal structure, electrical transport

Abstract

Interaction of hafnium with copper and tin was studied at 870 K over the whole concentration range using X-ray diffractometry and scanning electron microscopy. At the temperature of investigation three ternary compounds are realized in the Hf-Cu-Sn system: HfCuSn (LiGaGe-type), HfCu5Sn2 (HfCu5Sn2-type), and Hf5CuSn3 (Hf5CuSn3-type). New HfCu5Sn2 ternary stannide crystallizes in the hexagonal space group P63/mmc with cell parameters a = 0.42959(7) nm, с = 1.54165(4) nm. Electrical transport properties indicated metallic type of conductivity of the all studied ternary compounds. The DFT calculations were used to evaluate chemical bonding, elastic and physical properties of the ternary phases.

References

M. Uysal, T. Cetinkaya, M. Kartal, A. Alp, H. Akbulut, Production of Sn-Cu/MWCNT composite electrodes for Li-ion batteries by using electroless tin coating, Thin Solid Films, 572, 216 (2014); https://doi.org/10.1016/j.tsf.2014.08.019.

N. Jeong, E. Jwa, C. Kim, J.Y. Choi, J. Nam, S. Park, M. Jang, Direct synthesis of carbon nanotubes using Cu-Sn catalyst on Cu substrates and their corrosion behavior in 0.6 M NaCl solution, Appl. Surface Sci., 423, 283 (2017); https://doi.org/10.1016/j.apsusc.2017.06.021.

B. Zhang, Y.G. Chen, H.B. Guo, Effects of annealing on structures and properties of Cu-Hf-Al amorphous thin films, J. Alloys Compd. 582, 496 (2014); https://doi.org/10.1016/j.jallcom.2013.07.190.

Yu.V. Stadnyk, L.P. Romaka, Phase equilibria in the Hf-Ni-Sn ternary system and crystal structure of the Hf2Ni2Sn compound, J. Alloys Compd. 316, 169 (2001); https://doi.org/10.1016/S0925-8388(00)01036-7.

L. Romaka, Yu.V. Stadnyk, O.I. Bodak, Ternary Hf-Co-Sn system, J. Alloys Compd. 317-318, 347 (2001); https://doi.org/10.1016/S0925-8388(00)01428-6.

N. Melnychenko-Koblyuk, V.V. Romaka, L. Romaka, Yu. Stadnyk, Interaction between the components in the {Zr, Hf}-Ag-Sn ternary systems, Chem. Met. Alloys, 4, 234 (2011); https://doi.org/10.30970/cma4.0197.

R.V. Skolozdra, L.P. Romaka, L.G. Alselrud, G.А. Melnik, Ya.T. Таtomir, New phases of MgAgAs, LiGaGe and TiNiSi structural types containing d- and p-elements, Neorg. Mater. 35(4), 1 (1999).

J.C. Shuster, M. Naka, T. Shibayanagi, Crystal structure of CuSn3Ti5 and related phases, J. Alloys Compd. 305, L1 (2000); https://doi.org/10.1016/S0925-8388(00)00737-4.

T.B. Massalski, Binary Alloy Diagrams, ASM, Metals Park, OH, (USA, 1990).

S. Fürtauer, D. Li, D. Cupid, H. Frandorfer, The Cu-Sn phase diagram, Part I: New experimental results, Intermetallics, 34, 142 (2013); https://doi.org/10.1016/j.intermet.2012.10.004.

J. Rodriguez-Carvajal. Recent developments of the program FullProf. Commission on Powder Diffraction. IUCr Newsletter, 26, 12 (2001); http://www.iucr.org/iucr-top/comm/cpd/Newsletters/.

Elk, Program package; http://elk.sourceforge.net/.

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.

K. Momma, F. Izumi. "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data", J. Appl. Crystallogr., 44, 1272 (2011); https://doi.org/10.1107/S0021889811038970.

A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, C. Draxl, Excitinga full-potential all-electron package implementing density-functional theory and many-body perturbation theory, J. Phys.: Condens. Matter, 26, 363202 (2014); https://doi.org/10.1088/0953-8984/26/36/363202.

R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, C. Draxl, ElaStic: A tool for calculating second-order elastic constants from first principles, Comp. Phys. Commun., 184, 1861 (2013); https://doi.org/10.1016/j.cpc.2013.03.010.

J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett. 100, 136406 (2008); https://doi.org/10.1103/PhysRevLett.100.136406.

N. Melnychenko-Koblyuk, L. Romaka, L. Akselrud, V.V. Romaka, Yu. Stadnyk, Interaction between components in Hf-Cu-Sb ternary system at 770 K, J. Alloys Compd., 461, 147 (2008); https://doi.org/10.1016/j.jallcom.2007.07.012.

E.I. Gladyshevskii, O.I. Bodak, V.I. Yarovets, Y.K. Gorelenko, R.V. Skolozdra, Studies in crystalline structure and magnetic susceptibility of the R2Fe4Si9 and RFeSi3 (R=Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) compounds, Ukr. Fiz. Zh. 23, 77 (1978).

G.V. Samsonov, Mechanical Properties of the Elements Handbook of the physicochemical properties of the elements, (New York, USA, 1968).

S.F. Pugh. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. A, 45, 823 (1954); https://doi.org/10.1080/14786440808520496.

Downloads

Published

2024-08-22

How to Cite

Romaka, L., Romaka, V., Stadnyk, Y., & Horyn, A. (2024). Experimental study of Hf-Cu-Sn ternary system at 870 K. Physics and Chemistry of Solid State, 25(3), 485–491. https://doi.org/10.15330/pcss.25.3.485-491

Issue

Section

Scientific articles (Chemistry)

Most read articles by the same author(s)

<< < 1 2 3