Solid-phase equilibria in the GeBi2Te4-Bi2Te3-Te system and thermodynamic properties of compounds of the GeTe·mBi2Te3 homologous series

Array

Authors

  • T.M. Alakbarova Azerbaijan State Oil and Industry University
  • E.N. Orujlu Institute of Catalysis and Inorganic Chemistry named after acad.M.Nagiyev
  • D.M. Babanly French-Azerbaijani University
  • S.Z. Imamaliyeva Institute of Catalysis and Inorganic Chemistry named after acad.M.Nagiyev
  • M.B. Babanly Institute of Catalysis and Inorganic Chemistry named after acad.M.Nagiyev

DOI:

https://doi.org/10.15330/pcss.23.1.25-33

Keywords:

germanium-bismuth tellurides, phase diagram, solid solutions, EMF method, thermodynamic properties

Abstract

The GeBi2Te4-Bi2Te3-Te system was investigated by XRD and EMF measurements of the reversible concentration cell of the type

(-) GeTe (solid) │glycerol +KCl │ Ge-Bi-Тe (solid) (+)

in the 300-450K temperature range. It was shown that, in the indicated temperature range, elementary tellurium forms tie lines with all telluride phases of the system. Equations for the temperature dependencies of EMF in all phase regions have been obtained from the data of EMF measurements, from which the partial thermodynamic functions of GeTe in alloys have been calculated. The partial molar functions of germanium in alloys were determined by combining obtained data with the thermodynamic functions of GeTe. Standard Gibbs free energy and enthalpy of formation, as well as the standard entropy of the GeBi2Te4, GeBi4Te7, GeBi6Te10 compounds and solid solutions based on Bi2Te3 have been calculated using these data, solid-phase equilibrium diagram of the GeBi2Te4-Bi2Te3-Te system, and corresponding thermodynamic functions of Bi2Te3.

References

G. K. Ahluwalia, Applications of Chalcogenides: S, Se, and Te (Springer International Publishing, Switzerland, 2016).

A. V. Shevelkov, Russ. Chem. Rev., 77(1), 1 (2008); https://doi.org/10.1070/RC2008v077n01ABEH003746.

L. E. Shelimova, O. G. Karpinskii, P. P. Konstantinov. Inorg. Mater., 40(5), 451 (2004); https://doi.org/10.1023/b:inma.0000027590.43038.a8.

P. C. Wei, C. X. Cai, C. R. Hsing, Sci. Rep., 9(1), 8616 (2019); https://doi.org/10.1038/s41598-019-45071-9.

O. Tatsuro, K. Hiroki; I. Hiroki, K. Yoshiki, K. Kouichi, K. Atsuko, J. Electron. Mater., 45(3), 1478 (2016); https://doi.org/10.1007/s11664-015-4083-z.

J. Zhang, Y. Yan, H. Xie, T. Zhu, C. Zhang, J. Qiu, X. Tang, Ceram. Int., 45(13), 16039 (2019); https://doi.org/10.1016/j.ceramint.2019.05.119.

R. Lan. Thermophysical Properties and Measuring Technique of Ge-Sb-Te Alloys for Phase Change Memory (Springer Singapore, 2020).

Y. Meng, T. Cao, Y. Long, J. Appl. Phys., 128, 140904 (2020); https://doi.org/10.1063/5.0023925.

J. Tominaga, MRS Bulletin, 43(05), 347 (2018); https://doi.org/10.1557/mrs.2018.94.

P. Guo 1, A. M. Sarangan, I. Agha, Appl. Sci., 9(3), 530 (2019); https://doi.org/10.3390/app9030530.

J. E. Moore, Nature, 464(7286), 194 (2010); https://doi.org/10.1038/nature08916.

C. L. Kane, J. E. Moore, Phys. World, 24(2), 32 (2011); https://doi.org/10.1088/20587058/24/02/36.

S. V. Eremeev, G. Landolt, T. V. Menshchikova, B. Slomski, Y. M. Oroteev, Z. S. Aliev, M. B. Babanly, J. Henk, A. Ernst, L. Patthey, A. Eich, A. A. Khajetoorians, J. Hagemeister, O. Pietzsch, J. Wiebe, R. Wiesendanger, P. M. Echenique, S. S. Tsirkin, I. R. Amiraslanov, J. H. Dil, E. V. Chulkov, Nat. Commun., 3, 635 (2012); https://doi.org/10.1038/ncomms1638.

J. Kim, S-H. Jhi, J. Appl. Phys., 117, 195701 (2015); https://doi.org/10.1063/1.4921294.

Y-C. Zou, Z-G. Chen, E. Zhang, F. Kong, Y. Lu, L. Wang, J. Drennan, Z. Wang, F. Xiu, K. Cho, J. Zou, Nano Res., 11(2), 696 (2018); https://doi.org/10.1007/s12274-017-1679-z.

D. Pacile, S. V. Eremeev, M. Caputo, M. Pisarra, O. De Luca, I. Grimaldi, J. Fujii, Z. S. Aliev, M. B. Babanly, I. Vobornik, R. G. Agostino, A. Goldoni, E. V. Chulkov, M. Papagno, pss RRL, 12(12), 1800341-8 (2018); https://doi.org/10.1002/pssr.201800341.

M. B. Babanly, E. V. Chulkov, Z. S. Aliev, A. V. Shevelkov, I. R. Amiraslanov, Russ. J. Inorg. Chem., 62(13), 1703 (2017); https://doi.org/10.1134/S0036023617130034.

M. Nurmamat, K. Okamoto, S. Zhu, T. V. Menshchikova, I. P. Rusinov, V. O. Korostelev, K. Miyamoto, T. Okuda, T. Miyashita, X. Wang, Y. Ishida, K. Sumida, E. F. Schwier, M. Ye, Z. S. Aliev, M. B. Babanly, I. R. Amiraslanov, E. V. Chulkov, K. A. Kokh, O. Tereshchenko, K. Shimada, S. Shin, A. Kimura, ACS Nano, 14(7), 9059 (2020); https://doi.org/10.1021/acsnano.0c04145.

K. Okamoto, K. Kuroda, Z. S. Aliyev, M. B. Babanly, I. R. Amiraslanov, Phys.Rev.B. (American Phys.Soc.), 86(19), 195304 (2012); https://doi.org/10.1103/PhysRevB.86.195304.

T. V. Menshchikova, S. V. Eremeev, V. M. Kuznetsov, E. V. Chulkov, Mater., 13(20), 4481 (2020); https://doi.org/10.3390/ma13204481.

P. Mal, B. Das, G. Bera, G. R. Turpu, C. V. Tomy, P. Das, J. Mater. Sci.: Mater. Electron. (2021); http://doi.org/10.1007/s10854-021-06350-2.

M. B. Babanly, L. F. Mashadiyeva, D. M. Babanly, S. Z. Imamaliyeva, D. B. Taghiyev, Y. A. Yusibov, Russ. J. Inorg. Chem., 64(13), 1649 (2019); https://doi.org/10.1134/S0036023619130035.

L. E. Shelimova, O. G. Karpinskii, V. S. Zemskov, Inorg. Mater. 36(3), 235 (2000); https://doi.org/10.1007/BF02757928.

L. E. Shelimova, O. G. Karpinskii, V. I. Kosyakov, J. Struct. Chem. 41(1), 81 (2000); https://doi.org/10.1007/BF02684732.

C. S. Jung, S. H. Kim, H. S. Im, K. Park, J. Park, J-P. Ahn, S. J. Yoo, J-G. Kim, J. N. Kim, J. H. Shim, Nano Lett., 15(6), 3923 (2015); https://doi.org/10.1021/acs.nanolett.5b00755.

N. X. Abrikosov, G. T. Danilova-Dobryakova, Izv. Akad. Nauk SSSR, Neorg. Mater. 1, 57 (1965).

T. M. Alakbarova, H-J. Meyer, E. N. Orujlu, I. R. Amiraslanov, M. B. Babanly, Ph. Transit., 94(5), 366 (2021); https://doi.org/10.1080/01411594.2021.1937625.

Т. М. Alakbarova, H.-J. Meyer, M. B. Babanly, XI International Conference on Kinetics and mechanism of crystallization. Crystallization and materials of the new generation (Ivanova, 2021), p. 114.

A. S. Skoropanov, B. L. Valevsky, V. F. Skums, G. I. Samal, A. A. Vecher, Thermochim. Acta, 90, 331 (1985).

G. S. Hasanova, A. I. Aghazade, D. M. Babanly, S. Z. Imamaliyeva, Y. A. Yusibov, M. B. Babanly, J. Therm. Anal. Calorim., (2021); https://doi.org/10.1007/s10973-021-10975-0.

G. S. Hasanova, A. I. Aghazade, S. Z. Imamaliyeva, Y. A.Yusibov, M. B. Babanly. JOM, 73(5), 1511 (2021); https://doi.org/10.1007/s11837-021-04621-1.

V. P. Vassiliev, V. A. Lysenko, Electrochim. Acta, 222, 1770 (2016); https://doi.org/10.1016/j.electacta.2016.11.075.

E. G. Osadchii , Ya I. Korepanov, N. N. Zhdanov, Instrum. Exp. Tech., 59(2), 302 (2016); https://doi.org/10.1134/S0020441216010255.

V. Vassiliev, W. Gong, "Electrochemical cells with the liquid electrolyte in the study of semiconductor, metallic and oxide systems." Electrochemical Cells – New Advances in Fundamental Researches and Applications. Ed. Yan Shao, IntechOpen, 71 (2012); https://doi.org/10.5772/39007.

S. Z. Imamaliyeva, S. S. Musayeva, D. M. Babanly, Y. I. Jafarov, D. B. Tagiyev, M. B. Babanly, Thermochim. Acta, 679, 178319 (2019); https://doi.org/10.1016/j.tca.2019.178319.

A. G. Morachevsky, G. F. Voronin, V. A. Geyderich, I. B. Kutsenok, Electrochemical methods of investigation in hermodynamics of metal systems. (Moscow: Akademkniga Publ., 2003).

N. B. Babanly, E. N., Orujlu, S. Z. Imamaliyeva, Y. A. Yusibov, M. B. Babanly, J. Chem. Thermodyn., 128,78 (2019); https://doi.org/10.1016/j.jct.2018.08.012.

L. F. Mashadiyeva, D. M. Babanly, Y. A. Yusibov, D. B. Tagiyev, M. B. Babanly, Russ. J. Electrochem., 57(3), 281 (2021); https://doi.org/10.1134/S1023193521030083.

M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, S. Prokhorenko, O. Reshetnyak, D. Lindberg, L. Hupajom, JOM 73(5), 1487 (2021); https://doi.org/10.1007/s11837-021-04619-9)

M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, S. Prokhorenko, O. Reshetnyak, Thermochim. Acta, 698, 178862(1–7) (2021); https://doi.org/10.1016/j.tca.2021.178862)

M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, N. Yarema, D. Lindberg, O. Reshetnyak, L. Hupa, Energies. 14(5), 1314(1–15) (2021); https://doi.org/10.3390/en14051314.

N. K. Abrikosov, V. F. Bankina, L. V. Poretskaya, L. E. Shelimova, E. V. Skudnova, Semiconducting II–VI, IV–VI, and V–VI Compounds, (Springer US., 1969).

N. K. Abrikosov, V. F. Bankina, Inorg. Chem. USSR 3, 659 (1958).

R. F. Brebrick, The Chemistry of Extended Defects in Nonmetallic Solids, (American Elsevier Publ Co., Amsterdam, 1970).

D. M. Babanly, G. M. Velieva, S. Z. Imamaliyeva, Russ. J. Phys. Chem. 91, 1170 (2017); https://doi.org/10.1134/S0036024417070044.

T. M. Alakbarova, New mater. compd. appl., 5, 59 (2021).

V. S. Iorish, V. S. Yungman, Database of thermal constants of substances, (Digital version, Eds., 2006)

O. Кubaschewski, C. B. Alcock, P. J Spenser, Materials Thermo¬chemis¬try, (Pergamon Press, 1993).

I. Barin, Thermochemical Data of Pure Substances, (Wiley-VCH Verlag GmbH & Co., 2008).

Downloads

Published

2022-01-27

How to Cite

Alakbarova, T., Orujlu, E., Babanly, D., Imamaliyeva, S., & Babanly, M. (2022). Solid-phase equilibria in the GeBi2Te4-Bi2Te3-Te system and thermodynamic properties of compounds of the GeTe·mBi2Te3 homologous series: Array. Physics and Chemistry of Solid State, 23(1), 25–33. https://doi.org/10.15330/pcss.23.1.25-33

Issue

Section

Scientific articles (Chemistry)