The effect of silver nitrate on the biochemical parameters of Rosa canina L.
DOI:
https://doi.org/10.15330/jpnubio.11.57-65Keywords:
micropropagation, polyphenols, plant pigments, Rosa canina L.Abstract
Dietary supplements play a crucial role in providing the human body with phytochemicals that may be insufficiently represented in the daily diet. The dog rose (Rosa canina L.) exhibits anti-inflammatory, antioxidant, and antidiabetic properties due to its wide range of biologically active compounds, including anti-inflammatory galactolipid, vitamin C, phenols, lycopene, lutein, zeaxanthin, and other carotenoids. The high interest in the potential health benefits of Rosa canina has driven research and the development of technologies aimed at enhancing the content of biologically active compounds in this plant. It is well known that the activation of secondary metabolic pathways by elicitors and various stress factors can stimulate the production of biologically active substances in plants. This study investigates the effect of silver nitrate on several biochemical parameters of Rosa canina L. under conditions of microclonal propagation. The results demonstrated that the concentrations of chlorophylls a and b in the leaves of Rosa canina decreased under the influence of silver nitrate at concentrations of 1, 10, and 50 mg/L. The carotenoid content in the plant leaves remained unchanged under silver nitrate treatment, while the anthocyanin content increased. However, the levels of polyphenolic compounds and flavonoids decreased in plants exposed to all tested concentrations of silver nitrate.
References
Ahmad, S. A., Das, S. S., Khatoon, A., Ansari, M. T., Afzal, M., Hasnain, M. S., Nayak, A. K. (2020). Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Science for Energy Technologies, 3, 756–769. https://doi.org/10.1016/j.mset.2020.09.002
Bagherzadeh, H. M., & Ehsanpour, A. A. (2015). Physiological and biochemical responses of potato (Solanum tuberosum) to silver nanoparticles and silver nitrate treatments under in vitro conditions. Environmental and Experimental Biology, 20(4), 353–359. https://doi.org/10.1007/s40502-015-0188-x
Bais, H. P., Sudha, G. S., & Ravishankar, G. A. (2000). Putrescine and silver nitrate influences shoot multiplication, in vitro flowering and endogenous titers of polyamines in Cichorium intybus L. cv. Lucknow Local. Journal of Plant Growth Regulation, 19, 238–248. https://doi.org/10.1007/s003440000012
Bais, H. P., Sudha, G. S., & Ravishankar, G. A. (2001). Influence of putrescine, silver nitrate, and polyamine inhibitors on the morphogenetic response in untransformed and transformed tissues of Cichorium intybus and their regenerants. Plant Cell Reports, 20(6), 547–555. https://doi.org/10.1007/s002990100367
Bernal, A., Díaz, J., Pomar, F., & Merino, F. (2001). Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.). Plant Science, 161(1), 179–188. https://doi.org/10.1016/S0168-9452(01)00410-1
Domingo, G., Vannini, C., Onelli, E., Prinsi, B., Marsoni, M., Espen, L., et al. (2013). Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE, 8(7), 752. https://doi.org/10.1371/journal.pone.0068752
Elzaawely, A. A., Xuan, T. D., & Tawata, S. (2007). Changes in essential oil, kava pyrones, and total phenolics of Alpinia zerumbet (Pers.) B.L. Burtt. and R.M. Sm. leaves exposed to copper sulphate. Environmental and Experimental Botany, 59, 347–353. https://doi.org/10.1016/j.envexpbot.2006.04.007
Geremu, M., Tola, Y. B., & Sualeh, A. (2016). Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemistry and Biology of Technological Agriculture, 3, 25. https://doi.org/10.1186/s40538-016-0077-1
Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 74, 38–45. https://doi.org/10.1562/0031-8655(2001)0740038OPANEO2.0.CO2
Gross, E. L. (1993). Plastocyanin: Structure and function. Photosynthesis Research, 37, 103–116. https://doi.org/10.1007/BF02187469
Husak, V. V., Stambulska, U. Y., Pitukh, A. M., & Lushchak, V. I. (2024). Exposure of Paulownia seedlings to silver nitrate improves growth parameters via stimulation of mild oxidative stress. Agriculturae Conspectus Scientificus, 89(3), 209–218.
Jansson, H., & Hansson, Ö. (2008). Competitive inhibition of electron donation to photosystem 1 by metal-substituted plastocyanin. Biochimica et Biophysica Acta, 1777, 1116–1121. https://doi.org/10.1016/j.bbabio.2008.03.032
Javanmard, M., Asadi-Gharneh, H. A., & Nikneshan, P. (2017). Characterization of biochemical traits of dog rose (Rosa canina L.) ecotypes in the central part of Iran. Natural Product Research, 32(14), 1738–1743. https://doi.org/10.1080/14786419.2017.1396591
Karimi, J., & Mohsenzadeh, S. (2017). Physiological effects of silver nanoparticles and silver nitrate toxicity in Triticum aestivum. Environmental Toxicology, 41(1), 111–120. https://doi.org/10.1007/s40995-017-0200-6
Lichtenthaler, H. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. https://doi.org/10.1016/0076-6879(87)48036-1
Matić, P., Sabljić, M., & Jakobek, L. (2017). Validation of spectrophotometric methods for the determination of total polyphenol and total flavonoid content. Journal of AOAC International, 100(6), 1795–1803. https://doi.org/10.5740/jaoacint.17-0066
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.
Nejatzadeh-Barandozi, F., Darvishzadeh, F., & Aminkhani, A. (2014). Effect of nano silver and silver nitrate on seed yield of Ocimum basilicum L. Organic and Medicinal Chemistry Letters, 4(1). https://doi.org/10.1186/s13588-014-0011-0
Nair, P. M. G., & Chung, I. M. (2014). Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere, 112, 105–113. https://doi.org/10.1016/j.chemosphere.2014.03.056
Oumar, J. P., Young, M. M., & Reichert, N. A. (2004). Optimization of in vitro regeneration of multiple shoots from hypocotyl sections of cotton (Gossypium hirsutum L.). African Journal of Biotechnology, 3, 169–173.
Oukarroum, A., Bras, S., Perreault, F., & Popovic, R. (2012). Inhibitory effects of silver nanoparticles in two green algae Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 78, 80–85. https://doi.org/10.1016/j.ecoenv.2011.11.012
Prasad, M., & Strzalka, K. (1999). Impact of heavy metals on photosynthesis. In Heavy Metal Stress in Plants (pp. 117–138). https://doi.org/10.1007/978-3-662-07745-0_6
Rodríguez, F. I., Esch, J. J., Hall, A. E., Binder, B. M., Schaller, G. E., & Bleecker, A. B. (1999). A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science, 283(5404), 996–998. https://doi.org/10.1126/science.283.5404.996
Semchuk, N. M., Lushchak, V., Falk, J., Krupinska, K., & Lushchak, V. I. (2009). Inactivation of genes encoding tocopherol biosynthetic pathway enzymes results in oxidative stress in outdoor grown Arabidopsis thaliana. Plant Physiology and Biochemistry, 47(5), 384–390. https://doi.org/10.1016/j.plaphy.2009.01.009
Sharma, P., Bhatt, D., Zaidi, M., Saradhi, P. P., Khanna, P., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167(8), 2225–2233. https://doi.org/10.1007/s12010-012-9759-8
Shraim, A. M., Ahmed, T. A., Mizanur, R., & Yousef, M. H. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT, 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932
Stambulska, U. Y., & Lushchak, V. I. (2015). Efficacy of symbiosis formation by pea plants with local Western Ukrainian strains of Rhizobium. Journal of Microbiology, Biotechnology and Food Sciences, 5(2), 92–98. https://doi.org/10.15414/jmbfs.2015.5.2.92-98
Syu, Y. Y., Hung, J. H., Chen, J. C., & Chuang, H. W. (2014). Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 83, 57–64. https://doi.org/10.1016/j.plaphy.2014.07.010
Tahoori, F., Majd, A., Nejadsattari, T., Ofoghi, H., & Iranbakhsh, A. (2019). Qualitative and quantitative study of quercetin and glycyrrhizin in in vitro culture of liquorice (Glycyrrhiza glabra L.) and elicitation with AgNO3. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1), 143–151. https://doi.org/10.15835/nbha47111275
Tripathi, D. K., Tripathi, A., Singh, S., Singh, Y., Vishwakarma, K., Yadav, G., Sharma, S., Singh, V. K., Mishra, R. K., & Upadhyay, R. (2017). Uptake, accumulation and toxicity of silver nanoparticles in autotrophic plants, and heterotrophic microbes: A concentric review. Frontiers in Microbiology, 7, 1–16. https://doi.org/10.3389/fmicb.2017.00007
Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q., & Chu, C. H. (2020). The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine, 2555-2562. https://doi.org/10.2147/ijn.s246764