Biochemical parameters of Gynura procumbens Lour. on different types of culture in vitro media

Authors

  • Olha Bulii Department of Biochemistry and Biotechnology Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Dmytro Shebunchak Department of Biochemistry and Biotechnology Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Viktor Husak Department of Biochemistry and Biotechnology Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine https://orcid.org/0000-0001-9415-9837

DOI:

https://doi.org/10.15330/jpnubio.11.104-114

Keywords:

Gynura procumbens Lour, flavonoids, polyphenols, plant pigments

Abstract

Flavonoids, phenolic compounds, chlorophylls, carotenoids, and anthocyanins are vital secondary metabolites in plants, contributing to their growth, adaptation to environmental stressors, and medicinal properties. This study investigates the effects of different phytohormone concentrations on the biochemical composition of Gynura procumbens cultivated in vitro. Flavonoid content varied significantly among groups, with the highest levels observed in plants grown on medium supplemented with NAA at 2 mg/L, demonstrating a 70-90% increase compared to other treatments. Similarly, phenolic compounds were elevated by 28-31% under the same conditions, indicating improved plant resilience under stress. Chlorophyll a and b levels remained statistically consistent across groups, reflecting stable photosynthetic potential irrespective of phytohormone concentration. However, carotenoid synthesis peaked in plants grown on medium containing 2 mg/L BAP and 0.1 mg/L IAA, showing increases of 36-66% compared to other treatments. Anthocyanin content exhibited no significant variation between groups. These findings highlight the potential to optimize phytohormone concentrations in vitro to enhance specific phytochemical yields in Gynura procumbens, a plant with promising therapeutic applications.

References

Almeida, G.M., & Rodrigues, J. (2016). Desenvolvimento de plantas através da interferência de auxinas, citocininas, etileno e giberelinas. https://doi.org/10.5935/PAeT.V9.N03.13

Bari, M.S., Khandokar, L., Haque, E., Romano, B., Capasso, R., Seidel, V., Haque, M.A., & Rashid, M.A. (2021). Ethnomedicinal uses, phytochemistry, and biological activity of plants of the genus Gynura. Journal of ethnopharmacology, 113834. https://doi.org/10.1016/j.jep.2021.113834

Belščak-Cvitanović, A., Durgo, K., Huđek, A., Bačun-Družina, V., & Komes. (2018). Overview of polyphenols and their properties. Polyphenols: Properties, Recovery, and Applications. 1, 3-44. https://doi.org/10.1016/b978-0-12-813572-3.00001-4

Bhore, S.J., Ravichantar, N., & Loh, C.Y. (2010). Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation, 5, 191 - 197. https://doi.org/10.6026/97320630005191

Bijy, J., Sulaiman, C.T., Satheesh, G., & Reddy, K. (2013). Total Phenolics and Flavonoids in Selected Medicinal Plants from Kerala. International Journal of Pharmacy and Pharmaceutical Sciences. 6, 2-3.

Chen, J., Mangelinckx, S., Lü, H., Wang, Z., Li, W., & De Kimpe, N. (2015). Profiling and Elucidation of the Phenolic Compounds in the Aerial Parts of Gynura bicolor and G. divaricata Collected from Different Chinese Origins. Chemistry & Biodiversity, 12. https://doi.org/10.1002/cbdv.201400134

Czerpak, R., & Bajguz, A. (2014). Stimulatory effect of auxins and cytokinins on carotenes, with differential effects on xanthophylls in the green alga Chlorella pyrenoidosa Chick. Acta Societatis Botanicorum Poloniae, 66, 41-46. https://doi.org/10.5586/ASBP.1997.006

Gemmrich, A.R., & Kayser, H. (1984). Hormone Induced Changes in Carotenoid Composition in Ricinus Cell Cultures. II. Accumulation of Rhodoxanthin during Auxin-Controlled Chromoplast Differentiation. Zeitschrift für Naturforschung C, 39, 753 - 757. https://doi.org/10.1515/znc-1984-7-814

Gitelson A. A., Merzlyak M. N., Chivkunova O. B. (2001). Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem Photobiol, 74, 38–45. https://doi.org/10.1562/0031-8655(2001)0740038OPANEO2.0.CO2

Husak, V.V., Vasyliuk, D.V., Shcherba, R.M., Lushchak, V.I. (2020). Effect of Light Emitted by Diodes on Growth and Pigment Content of Black Currant Plantlets in vitro. Agric Conspec Sci, 85 (4), 317–323.

Kobayashi, K., Baba, S., Obayashi, T., Sato, M., Toyooka, K., Keränen, M., Aro, E., Fukaki, H., Ohta, H., Sugimoto, K., & Masuda, T. (2012). Regulation of Root Greening by Light and Auxin/Cytokinin Signaling in Arabidopsis[W]. Plant Cell, 24, 1081 - 1095. https://doi.org/10.1105/tpc.111.092254

Kurepa, J., Shull, T.E., & Smalle, J.A. (2023). Friends in Arms: Flavonoids and the Auxin/Cytokinin Balance in Terrestrialization. Plants, 12. https://doi.org/10.3390/plants12030517

Kyu-Hoi, L., Lee, S., Yeon, E., Who-Bong, C., Hyoung, K.J., Park, J., & Min, S.T. (2020). Effect of Irrigation Frequency on Growth and Functional Ingredient Contents of Gynura procumbens Cultivated in Hydroponics System. Korean Journal of Soil Science and Fertilizer. https://doi.org/10.7745/KJSSF.2020.53.2.175

Leonova, N. (2015). [Auxins and cytokinines synthesis by Bradyrhizobium japonicum under flavonoids influence]. Mikrobiolohichnyi zhurnal, 77 5, 95-103.

Luo, W., Liang, Q., Su, Y., Huang, C., Mo, B., Yu, Y., & Xiao, L. (2023). Auxin inhibits chlorophyll accumulation through ARF7-IAA14-mediated repression of chlorophyll biosynthesis genes in Arabidopsis. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1172059

Marigo, G., & Boudet, A.M. (1977). Relations polyphénols — croissance: Mise en évidence d'un effet inhibiteur des composés phénoliques sur le transport polarisé de l'auxine. Physiologia Plantarum, 41, 197-202. https://doi.org/10.1111/J.1399-3054.1977.TB05557.X

MS media (Murashige – Skoog) composition and preparation. https://sharebiology.com/ms-media-murashige-skoog-composition-and- preparation

Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383. https://doi.org/10.1016/j.foodchem.2022.13253

Nazish Siddiqui, et al (2013). Spectrophotometric determination of the total phenolic content, spectral and fluorescence study of the herbal Unani drug Gul-e-Zoofa (Nepeta bracteata Benth). J Taibah Univ Med Sci. 12(4): 360-363. https://doi.org/10.1016/j.jtumed.2016.11.006

Ng, J.L., Hassan, S., Truong, T.T., Hocart, C.H., Laffont, C., Frugier, F., & Mathesius, U. (2015). Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1. Plant Cell, 27, 2210 - 2226. https://doi.org/10.1105/tpc.15.00231

Pareek, S., Sagar, N.A., Sharma, S., Kumar, V., Agarwal, T., González-Aguilar, G.A., Yahia E.M. (2017). Chlorophylls: Chemistry and Biological Functions. Fruit and Vegetable Phytochemicals,14, 269–284.

Pramita, A. D., Kristanti, A. N., Sugiharto, Utami, E. S. W., & Manuhara, Y. S. W. (2018). Production of biomass and flavonoid of Gynura procumbens (Lour.) Merr shoots culture in temporary immersion system. Journal of Genetic Engineering and Biotechnology. doi: 10.1016/j.jgeb.2018.05.007.

Qiu, X., Guo, Y., & Zhang, Q. (2018). Chemical profile and antioxidant activity of Gynura bicolor DC. ethanolic extract. International Journal of Food Properties, 21, 407 - 415. https://doi.org/10.1080/10942912.2018.1424199

Semchuk, N.M., Lushchak, V., Falk, J., Krupinska, K., Lushchak, V.I. (2009). Inactivation of Genes, Encoding Tocopherol Biosynthetic PathwayEnzymes, Results in Oxidative Stress in Outdoor Grown Arabidopsis thaliana. Plant Physiology and Biochemistry, 47 (5), 384–390. https://doi.org/10.1016/j.plaphy.2009.01.009

Shathi, S., Aziz, F.B., Hasan, M.R., Islam, R., Meher, M.M., Sarkar, S., & Sharif, M. (2022). Phytochemical and Pharmacological Evaluation along with Antimicrobial Properties of Gynura Procumbens Leaves Extract. Journal of Bangladesh Agricultural University. https://doi.org/10.5455/jbau.19873

Takashi M. (2020). Carotenoids as natural functional pigments. J Nat Med. 74(1): 1-16. https://doi.org/10.1007/s11418-019-01364-x

Tan, H-L., Chan, K.-G., Pusparajah, P., Lee, L.-H.., & Goh, B.-H. (2016). Gynura procumbens: An Overview of the Biological Activities. Front. Pharmacol. https://doi.org/10.3389/fphar.2016.00052

Downloads

Published

2024-12-31

How to Cite

Bulii, O., Shebunchak, D., & Husak, V. (2024). Biochemical parameters of Gynura procumbens Lour. on different types of culture in vitro media . Journal of Vasyl Stefanyk Precarpathian National University. Biology, 11, 104–114. https://doi.org/10.15330/jpnubio.11.104-114

Issue

Section

Articles