The influence of deformations on single electron states in a molecule formed from three quantum dots of the heterosystem InAs/GaAs
DOI:
https://doi.org/10.15330/pcss.23.4.686-692Keywords:
three quantum dots, quantum molecule, deformationAbstract
A molecule consisting of three quantum dots, whose centers form a triangle of the InAs/GaAs heterosystem, was studied. A numerical calculation of the energy spectrum of an electron in a molecule formed from three spherical quantum dots was carried out. The influence of deformations on the electron energy depending on the size of the nanocrystals, the distance between them, and the symmetry of the quantum molecule were investigated. The case of symmetry of an equilateral and isosceles triangle is considered.
References
D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A, 57, 120 (1998); https://doi.org/10.1103/PhysRevA.57.120.
X.-Q. Li, Y. Arakawa, Single qubit from two coupled quantum dots: An approach to semiconductor quantum computations, Phys. Rev. A 63, 012302 (2000); https://doi.org/10.1103/PhysRevA.63.012302.
A.C. Johnson, J.R. Petta, C.M. Marcus, M.P. Hanson, A.C. Gossard, Singlet-triplet spin blockade and charge sensing in a few-electron double quantum dot, Phys. Rev. B, 72, 165308 (2005); https://doi.org/10.1103/PhysRevB.72.165308.
M.C. Rogge, R.J. Haug, Star shaped triple quantum dot with charge detection, Physica E, 40, 1656 (2008); https://doi.org/10.1016/j.physe.2007.10.015.
L. Gaudreau, A. Kam, G. Granger, S.A. Studenikin, P. Zawadzki, A.S. Sachrajda, A Tuneable Few Electron Triple Quantum Dot, Appl. Phys. Lett., 95, 193101 (2009); https://doi.org/10.1063/1.3258663.
S. Amaha, T. Hatano, H. Tamura, T. Kubo, S. Teraoka, Y. Tokura, D.G. Austing, S. Tarucha, Charge states of a collinearly and laterally coupled vertical triple quantum dot device, Physica E, 42, 899 (2010); https://doi.org/10.1016/j.physe.2009.11.023.
T. Takakura, A. Noiri, T. Obata, T. Otsuka, J. Yoneda, K. Yoshida, S. Tarucha, Single to quadruple quantum dots with tunable tunnel couplings, Appl. Phys. Lett., 104, 113109 (2014); https://doi.org/10.1063/1.4869108.
A.I. Savchuk, P.N. Gorley, V.V. Khomyak, A.G. Voloshchuk, V.I. Fediv, S.V. Bilichuk, I.D. Stolyarchuk, A. Perrone, Synthesis and characterization of semimagnetic semiconductor nanocrystals for spin electronics, Mater. Sci. Eng., C, 23, 753 (2003); https://doi.org/10.1016/j.msec.2003.09.092.
O. Voskoboynikov, Y. Li, C.P. Lee, S.M. Sze, O. Tretyak, Electron energy state spin-splitting in 3D cylindrical semiconductor quantum dots, Eur. Phys. J. B 28, 475-481 (2002). https://doi.org/10.1140/epjb/e2002-00250-6.
Shu-Shen Li, Jian-Bai Xia, Z. L. Yuan, Z. Y. Xu, Weikun Ge, Xiang Rong Wang, Y. Wang, J. Wang, and L.L. Chang, Effective-mass theory for InAs/GaAs strained coupled quantum dots, Phys. Rev. B 54, 11575 (1996); https://doi.org/10.1103/PhysRevB.54.11575.
I.V. Bilynskyi, V.B. Hols'kyi, R.Ya. Leshko, Optical properties and single-electron states, Condensed Matter Physics, 23(1), 13401 (2020); https://doi.org/10.5488/CMP.23.13401.
O. Stier, M. Grundmann, and D. Bimberg, Electronic and optical properties of strained quantum dots modeled by 8-band k∙p theory, Phys. Rev. B. 59, 5688-5701 (1999); https://doi.org/10.1103/PhysRevB.59.5688.
O.O. Dan’kiv, R.M. Peleshchak, B.M. Peleshchak, Formation of the potential profile in the GaAs matrix with InAs quantum dots, Bulletin of the National University "Lviv Polytechnic". Electronics. 482, 126-134 (2003).
O.O. Dan’kiv, R.M. Peleshchak, Influence of impurity on electronic transition in coherent–strained quantum dot, Functional Materials 13, 14-20 (2006).
V.A. Holovatsky, M.V. Chubrei, C.A. Duque, Core-shell type-II spherical quantum dot under externally applied electric field, Thin Solid Films 747, 139142 (2022); https://doi.org/10.1016/j.tsf.2022.139142.