Tl2S–In2S3–GeS2 Glass System as Novel Promising Materials for Photonics

Array

Authors

  • O.V. Tsisar Lesya Ukrainka Eastern European National University
  • L.V. Piskach Lesya Ukrainka Eastern European National University
  • O.V. Parasyuk Lesya Ukrainka Eastern European National University
  • O.V. Zamurujeva Lesya Ukrainka Eastern European National University
  • G.L. Myronchuk Lesya Ukrainka Eastern European National University
  • M. Piasecki Institute of Physics, J. Dlugosz University in Czestochowa

DOI:

https://doi.org/10.15330/pcss.20.4.416-422

Keywords:

chalcogenide glasses, optical properties, XRD diffraction patterns

Abstract

It was established that minimal content of the glass-forming component GeS2 is equal to 30 mol.% (by exploration the set of 23 different alloys with different composition). Correlation between structural properties, thermal parameters (glass transition, crystallization and melting temperatures) and optical absorption spectra along of the titled glasses system has been found. The temperatures, the band gap energy and the characteristic energy of vitreous alloys for the gastric system Tl2S‑In2S3‑GeS2 were investigated experimentally.

References

[1] G. Boudebs et. al., Optics Communications 219, 427 (2003) (doi: 10.1016/S0030-4018(03)01341-5).
[2] O.V. Tsisar et. al., Journal of Materials Science: Materials in Electronics 28(24), 19003 (2017) (doi: 10.1007/s10854-017-7854-x).
[3] O.V. Zamurueva, et. al., Optical Materials 37(C), 614 (2014) (doi: 10.1016/j.optmat.2014.08.004).
[4] H.Z. Tao et. al., Solid State Communications 138, 485 (2006) (doi: 10.1016/j.ssc.2006.04.031).
[5] A.H. Reshak et. al., Journal of Applied Physics 116(14), 143102 (2014) (doi: 10.1063/1.4897457).
[6] Yan Zhang, et al., Optics and laser technology 108, 306 (2018) (doi: 10.1016/j.optlastec.2018.07.002).
[7] Prabhudutta Pradhan, R. Naik, N. Das, A. K. Panda, Optics and laser technology 96, 158 (2017) (doi: 10.1016/j.optlastec.2017.05.033).
[8] A.H. Kevshyn, et al., Glass Physics and Chemistry 36(1), 27 (2010) (doi: 10.1134/S1087659610010050).
[9] Tao Haizheng et al., Journal of Non-Crystalline Solids 354, 1303–1307 (2008) (doi: 10.1016/j.jnoncrysol.2007.01.103).
[10] R. Dedryvère, P.E. Lippens, J.C. Jumas, I. Lefebvre, Solid State Physics 3, 267 (2001) (doi: 10.1016/S1293-2558(00)01137-7).
[11] Lin Chang-Gui et al., Acta Physica Sinica-Chinese Edition 64(5), 054208 (2015) (doi: 10.7498/aps.64.054208).
[12] I.M. Fodchuk, S.M. Novikov, I.V. Yaremchuk, Applied Optics B120-B125 (2016), (doi: 10.1364/AO.55.00B120).
[13] O. Y. Khyzhun et al., Materials Chemistry and Physics 204, 336(2018) (doi: 10.1016/j.matchemphys.2017.10.054).
[14] Yohannan Jinu P., Vidyasagar Kanamaluru, Journal of Solid State Chemistry 238, 291 (2016) (doi: 10.1016/j.jssc.2016.03.045).
[15] O.Y. Khyzhun et al., Journal of Alloys and Compounds 735, 1694 (2018) (doi: 10.1016/j.jallcom.2017.11.257).
[16] Qiming Liu & Peng Zhang, Scientific Reports 4, 5719 (2014) (doi: 10.1038/srep05719).

Downloads

Published

2019-12-15

How to Cite

Tsisar, O., Piskach, L., Parasyuk, O., Zamurujeva, O., Myronchuk, G., & Piasecki, M. (2019). Tl2S–In2S3–GeS2 Glass System as Novel Promising Materials for Photonics: Array. Physics and Chemistry of Solid State, 20(4), 416–422. https://doi.org/10.15330/pcss.20.4.416-422

Issue

Section

Scientific articles