Aging as a risk factor for neurodegenerative diseases: insights from Ukraine and the world

Authors

DOI:

https://doi.org/10.15330/jpnubio.11.78-92

Keywords:

Brain aging, neurodegenerative diseases, Alzheimer’s disease, Parkinson’s disease

Abstract

Aging, often referred to as the autumn of life, is a natural and complex biological process that leads to a progressive decline in physiological functions, increasing susceptibility to various diseases, including neurodegenerative disorders. The neurodegenerative conditions, characterized by the loss of neuronal function and structure, include Alzheimer's disease (AD), Parkinson's disease (PD), and other dementias, which are leading causes of disability and mortality globally, particularly in the elderly. This article explores the most common theories of aging, relationship between aging and neurodegenerative diseases, and molecular and cellular processes underlying neurodegeneration. In particular, we discuss such theories of aging as epigenetic, damage and repair, and metabolic ones, as well as their importance for understanding neurodegenerative processes. At the cellular level, factors such as protein misfolding, mitochondrial dysfunction, and chronic inflammation link aging to neurodegeneration. Using statistical data, we examined the prevalence and mortality associated with these diseases in Ukraine, comparing trends with other countries. In particular, we examined the prevalence and mortality associated with neurodegenerative diseases over the past two decades in Ukraine, in two age groups: 50–69 years and 70+. Comparisons of data from Ukraine with global trends revealed that individuals aged 70+ experience a fourfold higher disease burden, as measured by disability-adjusted life years (DALYs). However, Ukraine demonstrates relatively low mortality rates for these diseases that may reflect underdiagnosis, shorter life expectancy, and unique demographic and socioeconomic factors. The findings emphasize the critical need for improved diagnostics, access to medical care, and population-based prevention strategies to address this growing health burden. Recommendations include early interventions targeting modifiable risk factors, increased research investment into age-related diseases, and the development of robust support systems for elderly populations. These efforts could significantly improve health outcomes, reduce healthcare costs, and enhance quality of life for aging populations.

References

Alami M., Fulop T., Boumezough K., Khalil A., Zerif E. & H. Berrougui H. (2024). Oxidative Stress in Neurodegenerative Diseases. Biomarkers of Oxidative Stress, pp 71–102. https://doi.org/10.1007/978-3-031-69962-7_4

Alzheimer’s Association. (2022). Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 18(4), 700–789. https://doi.org/10.1002/alz.12638

Armstrong R.A. (2019). Risk factors for Alzheimer’s disease. Folia Neuropathol, 57: 87-105. https://doi.org/10.5114/fn.2019.85929

Armstrong R.A. (2020) What causes neurodegenerative disease? Folia Neuropathol, 58(2):93–112. https://doi.org/10.5114/fn.2020.96707

Ascherio, A., & Schwarzschild, M. A. (2016). The epidemiology of Parkinson’s disease: Risk factors and prevention. The Lancet Neurology, 15(12), 1257–1272. https://doi.org/10.1016/S1474-4422(16)30230-7

Bengtson V.L., Settersten R.A. (2019). Emerging theory on aging as a lifelong process. The Gerontologist, Volume 55, Issue Suppl_2, Page 791. https://doi.org/10.1093/geront/gnv424.06

Bennett D.A., Wilson R.S., Boyle P.A., Buchman A.S., Schneider J.A. (2012). Relation of neuropathology to cognition in persons without cognitive impairment. Ann Neurol, 728: 599-609. https://doi.org/10.1002/ana.23654

Brown, R. H., & Al-Chalabi, A. (2017). Amyotrophic lateral sclerosis. The New England Journal of Medicine, 377(2), 162–172. https://doi.org/10.1056/NEJMra1603471

Childs, B. G., Baker, D. J., Wijshake, T., Conover, C. A., Campisi, J., & van Deursen, J. M. (2015). Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nature Medicine, 21(12), 1424–1435. https://doi.org/10.1038/nm.4000

Cholerton B., Larson E.B., Baker L.D., Craft S., Crane P.K., Millard S.P., Sonnen J.A., Montine T.J. (2013). Neuropathologic correlates of cognition in a population-based sample. Journal of Alzheimer’s Disease, 36: 699- 709. https://doi.org/10.3233/JAD-130281

Collier T.J., Kanaan N.M., Kordower J.H. (2011). Ageing as a primary risk factor for Parkinson’s disease: evidence from studies of non-human primates. Nature Reviews Neuroscience, 12: 359-366. https://doi.org/10.1038/nrn3039

Consuelo B.B. (2021). The Challenge of Unlocking the Biological Secrets of Aging. Specialty grand challenge, sec. Molecular Mechanisms of Aging Volume 2. https://doi.org/10.3389/fragi.2021.676573

Cummings J., Zhou Y., Lee G., Zhong K., Fonseca J., Cheng F., (2023). Alzheimer’s drug development pipeline: 2023. Alzheimer's & Dementia: Translational Research & Clinical Interventions, Volume 9, Issue 2. https://doi.org/10.1002/trc2.12385

Dabir D.V., Robinson M.B., Swanson E., Zhang B., Trojanowski J.Q, Lee V. M.-Y. and Forman M. S. (2006). Impaired glutamate transport in a mouse model of tau pathology in astrocytes. Journal of Neuroscience, 26 (2) 644-654. https://doi.org/10.1523/JNEUROSCI.3861-05.2006

Dugger B.N., Adler C.H., Shell H.A., Caviness J., Jacobsen S., DriverDinckey E., Beach T.G. (2014). Concomitant pathologies among a spectrum of parkinsonian disorders. Parkinsonism & Related Disorders, 20: 525-529. https://doi.org/10.1016/j.parkreldis.2014.02.012

Fontana, L., Partridge, L., & Longo, V. D. (2010). Extending healthy life span—from yeast to humans. Science, 328(5976), 321–326. https://doi.org/10.1126/science.1172539

Franceschi C., Garagnani P., Parini P., Giuliani C., & Santoro A. (2018). Inflammaging: A new immune–metabolic viewpoint for age-related diseases. Nature Reviews Endocrinology, 14(10), 576–590. https://doi.org/10.1038/s41574-018-0059-4

Frontiers. (2021). Aging and neurodegeneration in the brain. Frontiers Research Topic. Retrieved from https://www.frontiersin.org/research-topics/38651/aging-and-neurodegeneration-in-the-brain

Gandhi J., Antonelli A., Afridi A., Vatsia S., Joshi G., Romanov V., Murray I.V.J. and Sardar Khan A. (2018). Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Reviews in the Neurosciences. https://doi.org/10.1515/revneuro-2016-0035

Gitler, A. D., Dhillon, P., & Shorter, J. (2017). Neurodegenerative disease: Models, mechanisms, and a new hope. Dis Model Mechanisms, 10 (5): 499–502. https://doi.org/10.1242/dmm.030205

Gladyshev V.N. (2016). Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell. 2016 Aug;15(4):594-602. https://doi:10.1111/acel.12480. PMID: 27060562; PMCID: PMC4933668.

Harman D. (2006). Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci., 1067:10-21. https://doi:10.1196/annals.1354.003. PMID: 16803965

Henderson A.S. (1988). The risk factors for Alzheimer’s disease: a review and a hypothesis. Acta Psychiat Scandinavica, 78: 257-275. https://doi.org/10.1111/j.1600-0447.1988.tb06336.x

Heneka, M. T., et al. (2015). Neuroinflammation in Alzheimer's disease. The Lancet Neurology, 14(4):388-405. https://doi: 10.1016/S1474-4422(15)70016-5.

Hou Y., Dan X., Babbar M., Wei Y., Hasselbalch S. G., Croteau D. L., & Bohr, V. A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology, 15(10), 565–581. https://doi.org/10.1038/s41582-019-0244-7

Hou, Y., et al. (2019). Ageing as a risk factor for neurodegenerative diseases. Nature Reviews Neurology, 15(10), 565–581. https://doi.org/10.1038/s41582-019-0244-7

Hyman B.T., Phelps C.H., Beach T.G., Bigio E.H., Cairns N.J., Carrillo M.C., Dickson D.W., Duyckaerts C., Frosch M.P., Masliah E., Mirra S.S., Nelson P.T., Schneider J.A., Thal D.R., Thies B., Trojanowski J.Q., Vinters H.V., Montine T.J. (2012). National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s Dementia, 8: 1-13. https://doi.org/10.1016/j.jalz.2011.10.007

Imhof A., Kovari E., von Gunten A., Gold G., Rivara C.B., Herrmann F.R., Hof P.R., Bouras C., Glannakopoulos P. (2007). Morphological substrates of cognitive decline in nonagenarians and centenarians: A new paradigm? Journal of the Neurological Science, 257: 72-79. https://doi.org/10.1016/j.jns.2007.01.025

Institute for Health Metrics and Evaluation (IHME) (2021). GBD Compare Data Visualization; IHME, University of Washington, Seattle, WA, USA. http://vizhub.healthdata.org/gbd-compare

Kalia, L. V., & Lang, A. E. (2016). Parkinson’s disease. The Lancet, 386(9996), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

Klemmensen M.M., Borrowman S.H., Pearce C., Pyles B., Chandra Bh., (2023). Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics, 19;21(1): e00292. https://doi.org/10.1016/j.neurot.2023.10.002.

López-Otín C., Blasco M. A., Partridge L., Serrano M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

Lukyanova E. (2022). Dissertation "The role of endothelial dysfunction in the mechanisms of the development of scopolamine- and nitrite-induced alzheimer's-type dementia in rats"

Lushchak O., Schosserer M., Grillari J. (2006). Senopathies-Diseases Associated with Cellular Senescence. Biomolecules., 8;13(6):966. https://doi:10.3390/biom13060966. PMID: 37371545; PMCID: PMC10296713.

Lushchak V.I., Duszenko M., Gospodaryov D.V., Garaschuk O. (2021). Oxidative Stress and Energy Metabolism in the Brain: Midlife as a Turning Point. Antioxidants (Basel)., 28;10(11):1715. https://doi:10.3390/antiox10111715. PMID: 34829586; PMCID: PMC8614699.

Martínez-Cué C., Rueda N. (2020). Cellular senescence in neurodegenerative diseases. Front Cell Neurosci, Sec. Cellular Neuropathology ,Volume 14 - 2020. https://doi.org/10.3389/fncel.2020.00016

Mattson M. P., & Arumugam T. V. (2018). Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell Metabolism, 27(6), 1176–1199. https://doi.org/10.1016/j.cmet.2018.05.011

Montine T.J., Phelps C.H., Beach T.G., Bigio E.H., Cairns N.J., Dickson D.W., Duyckaerts C., Frosch M.P., Masliah E., Mirra S.S., Nelson P.T., Schneider J.A., Thal D.R., Trojanowski J.Q., Vinters H.V., Hyman B.T., National Institute on Aging, Alzheimer’s Association (2012). National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol, 23: 1-11. https://doi.org/10.1007/s00401-011-0910-3

Navarro C., Salazar J., Díaz M.P., Chacin M., Santeliz R., Vera I.D., Marco L., Parra H., Bernal M.C., Castro A., Escalona D., García-Pacheco H., Bermúdez V. (2023). Intrinsic and environmental basis of aging: A narrative review. Heliyon. 18;9(8):e18239. https://doi:10.1016/j.heliyon.2023.e18239. PMID: 37576279; PMCID: PMC10415626.

Nguyen H., Zarriello S., Coats A., Nelson C., Kingsbury C., Gorsky A., Rajani M., Neal E.G., Borlongan C.V. (2019). Stem cell therapy for neurological disorders: A focus on aging. Neurobiology of Disease, Volume 126, Pages 85-104. https://doi.org/10.1016/j.nbd.2018.09.011

Nichols, E., et al. (2019). Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 88–106. https://doi.org/10.1016/S1474-4422(18)30403-4

Nussbaum R. L. & Ellis C. E. (2003). Alzheimer’s disease and Parkinson’s disease. The New England Journal of Medicine, 348:1356-1364. https://doi.org/10.1056/NEJM2003ra020003

Oosterhuis E.J., Slade K., May P.J.C. and Nuttall H.E. (2022). Toward an Understanding of Healthy Cognitive Aging: The Importance of Lifestyle in Cognitive Reserve and the Scaffolding Theory of Aging and Cognition. The Journals of Gerontology, Series B, Volume 78, Issue 5, Pages 777–788. https://doi.org/10.1093/geronb/gbac197

Pajares M., Rojo A.I., Manda G., Boscá L., Cuadrado A. (2020). The role of inflammation in Parkinson’s disease. Cells, 14;9(7):1687. https://doi.org/10.3390/cells9071687

Poewe W., Seppi K., Tanner C.M., Halliday G.M., Brundin P., Volkmann J., Schrag A-E., Lang A.E. (2017). Parkinson disease. Nature Reviews Disease Primers, 3:17013. https://doi.org/10.1038/nrdp.2017.13

Pringsheim, T., et al. (2019). The incidence and prevalence of Huntington’s disease: A systematic review and meta-analysis. Movement Disorders, 34(12), 1823–1831. https://doi.org/10.1002/mds.25075

Przedborski, S., Vila, M., & Jackson-Lewis, V. (2003). Neurodegeneration: What is it and where are we? The Journal of Clinical Investigation, 111(1):3-10. https://doi.org/10.1172/JCI17522

Public Health Center of the Ministry of Health of Ukraine, 2024. https://phc.org.ua

Ross, C. A., & Tabrizi, S. J. (2011). Huntington’s disease: From molecular pathogenesis to clinical treatment. The Lancet Neurology, 10(1):83-98. https://doi.org/10.1016/S1474-4422(10)70245-3

Rubinsztein D. C., Mariño G., & Kroemer G. (2011). Autophagy and aging. Cell, 146(5), 682–695. https://doi.org/10.1016/j.cell.2011.07.030

Sen T., Thummer R.P. (2022). CRISPR and iPSCs: Recent Developments and Future Perspectives in Neurodegenerative Disease Modelling, Research, and Therapeutics. Neurotoxicity Research, Volume 40, pages 1597–1623. https://doi.org/10.1007/s12640-022-00564-w

Sen, P., Shah, P. P., Nativio, R., & Berger, S. L. (2016). Epigenetic mechanisms of longevity and aging. Cell, 166(4), 822–839. https://doi.org/10.1016/j.cell.2016.07.050

Sun, N., Youle, R. J., & Finkel, T. (2016). The mitochondrial basis of aging. Molecular Cell, 61(5), 654–666. https://doi.org/10.1016/j.molcel.2016.01.028

Taylor, J. P., Brown, R. H., & Cleveland, D. W. (2016). Decoding ALS: From genes to mechanism. Nature, 539(7628), 197–206. https://doi.org/10.1038/nature20413

Vaiserman A., Koliada A., Lushchak O. (2018). Developmental programming of aging trajectory. Ageing Res Rev., 47:105-122. https://doi:10.1016/j.arr.2018.07.007. PMID: 30059788.

Valiukas Z., Ephraim R., Tangalakis K., Davidson M., Apostolopoulos V., Feehan J. (2022). Immunotherapies for Alzheimer’s Disease—A Review. Vaccines (Basel), 10(9):1527. https://doi.org/10.3390/vaccines10091527

Wyss-Coray T., 2016. Ageing, neurodegeneration and brain rejuvenation. Nature, 539(7628):180-186. https://doi.org/10.1038/nature20411

Yuan Q., Li X., Zhang S., Wang H., Wang Y. (2021). Extracellular vesicles in neurodegenerative diseases: Insights and new perspectives. Genes & Diseases, Volume 8, Issue 2, Pages 124-132. https://doi.org/10.1016/j.gendis.2019.12.001

Downloads

Published

2024-12-29

How to Cite

Luhovyi, O., & Bayliak, M. (2024). Aging as a risk factor for neurodegenerative diseases: insights from Ukraine and the world. Journal of Vasyl Stefanyk Precarpathian National University. Biology, 11, 78–92. https://doi.org/10.15330/jpnubio.11.78-92

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.