A comparative analysis of neurohumoral regulation and hormonal dynamics in post-traumatic stress disorder (PTSD) between human and mouse models
DOI:
https://doi.org/10.15330/jpnubio.11.33-43Keywords:
Post-traumatic stress disorder, neurohumoral regulation, HPA axis, hormonal dynamics, neuropeptides, mouse modelAbstract
Post-traumatic stress disorder (PTSD) is a multifaceted psychiatric condition arising from exposure to traumatic events, affecting millions globally, particularly among veterans, survivors of violence, and individuals impacted by natural disasters. It manifests through persistent symptoms such as intrusive memories, hyperarousal, emotional dysregulation, and cognitive impairments. This review examines the neurobiological mechanisms underlying PTSD, focusing on the critical roles of neurohumoral regulation and hormonal dynamics, particularly the hypothalamic-pituitary-adrenal (HPA) axis. Dysregulation of the HPA axis, characterized by paradoxical cortisol dynamics that transition from hyperactivity in acute stress phases to hypoactivity in chronic stages, is a hallmark of PTSD. This hormonal imbalance influences the neural pathways associated with fear responses, emotional regulation, and stress recovery.
Additionally, the review highlights the complex interplay between the HPA axis and other hormonal systems, such as the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes, and neuropeptides like oxytocin and vasopressin. These interactions contribute to the disorder’s heterogeneity and individualized responses to trauma. Animal studies, particularly those using mouse models, have provided critical insights into genetic, physiological, and methodological factors influencing PTSD development. However, notable differences in glucocorticoid dynamics, receptor sensitivity, and stress recovery between humans and mice underscore the challenges of directly extrapolating findings across species.
Furthermore, the review explores sex-specific vulnerabilities, with women being disproportionately affected due to the modulatory effects of estrogen, progesterone, and testosterone on stress resilience and emotional processing. Neurochemical dysregulation, particularly involving serotonin, dopamine, and gamma-aminobutyric acid (GABA), further compounds the complexity of PTSD, influencing mood regulation and behavioral responses to trauma.
This comprehensive analysis underscores the need for a multidimensional approach to understanding PTSD, integrating hormonal, genetic, and neurochemical perspectives. Such an approach is vital for developing targeted therapeutic interventions that address the dynamic and individualized nature of the disorder.
References
Bryant, R. A. (2019). Post‐traumatic stress disorder: A state‐of‐the‐art review of evidence and challenges. World Psychiatry, 18(3), 259-269.
Yehuda, R., Hoge, C. W., McFarlane, A. C., Vermetten, E., Lanius, R. A., Nievergelt, C. M., ... & Hyman, S. E. (2015). Post-traumatic stress disorder. Nature Reviews Disease Primers, 1(1), 1-22.
D’Elia, A. T. D., Juruena, M. F., Coimbra, B. M., Mello, M. F., & Mello, A. F. (2021). Posttraumatic stress disorder (PTSD) and depression severity in sexually assaulted women: Hypothalamic-pituitary-adrenal (HPA) axis alterations. BMC Psychiatry, 21, 1-12.
von Majewski, K., Kraus, O., Rhein, C., Lieb, M., Erim, Y., & Rohleder, N. (2023). Acute stress responses of autonomous nervous system, HPA axis, and inflammatory system in posttraumatic stress disorder. Translational Psychiatry, 13(1), 36.
Narvaes, R., & Martins de Almeida, R. M. (2014). Aggressive behavior and three neurotransmitters: Dopamine, GABA, and serotonin—A review of the last 10 years. Psychology & Neuroscience, 7(4), 601.
Bremner, J. D., & Pearce, B. (2016). Neurotransmitter, neurohormonal, and neuropeptidal function in stress and PTSD. In Posttraumatic Stress Disorder (pp. 179-232).
Goswami, S., Rodríguez-Sierra, O., Cascardi, M., & Paré, D. (2013). Animal models of post-traumatic stress disorder: Face validity. Frontiers in Neuroscience, 7, 89.
Lisieski, M. J., Eagle, A. L., Conti, A. C., Liberzon, I., & Perrine, S. A. (2018). Single-prolonged stress: A review of two decades of progress in a rodent model of post-traumatic stress disorder. Frontiers in Psychiatry, 9, 196.
Algamal, M., Ojo, J. O., Lungmus, C. P., Muza, P., Cammarata, C., Owens, M. J., ... & Crawford, F. (2018). Chronic hippocampal abnormalities and blunted HPA axis in an animal model of repeated unpredictable stress. Frontiers in Behavioral Neuroscience, 12, 150.
Cranston, C. C. (2014). A review of the effects of prolonged exposure to cortisol on the regulation of the HPA axis: Implications for the development and maintenance of posttraumatic stress disorder. The New School Psychology Bulletin, 11(1), 1-13.
Fischer, S., Schumacher, T., Knaevelsrud, C., Ehlert, U., & Schumacher, S. (2021). Genes and hormones of the hypothalamic–pituitary–adrenal axis in post-traumatic stress disorder: What is their role in symptom expression and treatment response? Journal of Neural Transmission, 128, 1279-1286.
Lee, H. S., Min, D., Baik, S. Y., Kwon, A., Jin, M. J., & Lee, S. H. (2022). Association between dissociative symptoms and morning cortisol levels in patients with post-traumatic stress disorder. Clinical Psychopharmacology and Neuroscience, 20(2), 292.
Carvalho, C. M., Coimbra, B. M., Ota, V. K., Mello, M. F., & Belangero, S. I. (2017). Single-nucleotide polymorphisms in genes related to the hypothalamic-pituitary-adrenal axis as risk factors for posttraumatic stress disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 174(7), 671-682.
Sheerin, C. M., Lind, M. J., Bountress, K. E., Marraccini, M. E., Amstadter, A. B., Bacanu, S. A., & Nugent, N. R. (2020). Meta-analysis of associations between hypothalamic-pituitary-adrenal axis genes and risk of posttraumatic stress disorder. Journal of Traumatic Stress, 33(5), 688-698.
Raise-Abdullahi, P., Meamar, M., Vafaei, A. A., Alizadeh, M., Dadkhah, M., Shafia, S., ... & Rashidy-Pour, A. (2023). Hypothalamus and post-traumatic stress disorder: A review. Brain Sciences, 13(7), 1010.
Venihaki, M., & Majzoub, J. (2002). Lessons from CRH knockout mice. Neuropeptides, 36(2-3), 96-102.
Spiga, F., Walker, J. J., Terry, J. R., & Lightman, S. L. (2011). HPA axis-rhythms. Comprehensive Physiology, 4(3), 1273-1298.
Dickmeis, T. (2009). Glucocorticoids and the circadian clock. Journal of Endocrinology, 200(1), 3.
Pryce, C. R. (2008). Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: Inter-species and intra-species differences. Brain Research Reviews, 57(2), 596-605.
Meijer, O. C., Buurstede, J. C., & Schaaf, M. J. (2019). Corticosteroid receptors in the brain: Transcriptional mechanisms for specificity and context-dependent effects. Cellular and Molecular Neurobiology, 39, 539-550.
Anisman, H., Lacosta, S., Kent, P., McIntyre, D. C., & Merali, Z. (1998). Stressor-induced corticotropin-releasing hormone, bombesin, ACTH, and corticosterone variations in strains of mice differentially responsive to stressors. Stress, 2(3), 209-220.
Porcu, P., & Morrow, A. L. (2014). Divergent neuroactive steroid responses to stress and ethanol in rat and mouse strains: Relevance for human studies. Psychopharmacology, 231, 3257-3272.
García, A., Martí, O., Vallès, A., Dal-Zotto, S., & Armario, A. (2000). Recovery of the hypothalamic-pituitary-adrenal response to stress: Effect of stress intensity, stress duration, and previous stress exposure. Neuroendocrinology, 72(2), 114-125.
Dekel, S., Ein-Dor, T., Rosen, J. B., & Bonanno, G. A. (2017). Differences in cortisol response to trauma activation in individuals with and without comorbid PTSD and depression. Frontiers in Psychology, 8, 797.
Zhu, L. J., Liu, M. Y., Li, H., Liu, X., Chen, C., Han, Z., ... & Zhou, Q. G. (2014). The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity. PLoS ONE, 9(5), e97689.
Perrine, S. A., Eagle, A. L., George, S. A., Mulo, K., Kohler, R. J., Gerard, J., ... & Conti, A. C. (2016). Severe, multimodal stress exposure induces PTSD-like characteristics in a mouse model of single prolonged stress. Behavioural Brain Research, 303, 228-237.
Souza, R. R., Noble, L. J., & McIntyre, C. K. (2017). Using the single prolonged stress model to examine the pathophysiology of PTSD. Frontiers in Pharmacology, 8, 615.
Borrow, A. P., Heck, A. L., Miller, A. M., Sheng, J. A., Stover, S. A., Daniels, R. M., ... & Handa, R. J. (2019). Chronic variable stress alters hypothalamic-pituitary-adrenal axis function in the female mouse. Physiology & Behavior, 209, 112613.
Bangasser, D. A., & Valentino, R. J. (2014). Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Frontiers in Neuroendocrinology, 35(3), 303-319.
Pooley, A. E., Benjamin, R. C., Sreedhar, S., Eagle, A. L., Robison, A. J., Mazei-Robison, M. S., ... & Jordan, C. L. (2018). Sex differences in the traumatic stress response: PTSD symptoms in women recapitulated in female rats. Biology of Sex Differences, 9, 1-11.
Dekel, S., Ein-Dor, T., Rosen, J. B., & Bonanno, G. A. (2017). Differences in cortisol response to trauma activation in individuals with and without comorbid PTSD and depression. Frontiers in Psychology, 8, 797.
Pace, T. W., & Heim, C. M. (2011). A short review on the psychoneuroimmunology of posttraumatic stress disorder: From risk factors to medical comorbidities. Brain, Behavior, and Immunity, 25(1), 6-13.
Rohleder, N., & Karl, A. (2006). Role of endocrine and inflammatory alterations in comorbid somatic diseases of post-traumatic stress disorder. Minerva Endocrinologica, 31(4), 273-288.
Szot, P. (2006). Comparison of noradrenergic receptor distribution in the hippocampus of rodents and humans: Implications for differential drug response. Letters in Drug Design & Discovery, 3(9), 645-652.
Ney, L. J., Gogos, A., Hsu, C. M. K., & Felmingham, K. L. (2019). An alternative theory for hormone effects on sex differences in PTSD: The role of heightened sex hormones during trauma. Psychoneuroendocrinology, 109, 104416.
Ravi, M., Stevens, J. S., & Michopoulos, V. (2019). Neuroendocrine pathways underlying risk and resilience to PTSD in women. Frontiers in Neuroendocrinology, 55, 100790.
Mendoza, C., Barreto, G. E., Ávila-Rodriguez, M., & Echeverria, V. (2016). Role of neuroinflammation and sex hormones in war-related PTSD. Molecular and Cellular Endocrinology, 434, 266-277.
Pivac, N. (2019). Theranostic approach to PTSD. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 92, 260-262.
Bangasser, D. A., Wiersielis, K. R., & Khantsis, S. (2016). Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Research, 1641, 177-189.
Lalonde, C. S., Mekawi, Y., Ethun, K. F., Beurel, E., Gould, F., Dhabhar, F. S., ... & Michopoulos, V. (2021). Sex differences in peritraumatic inflammatory cytokines and steroid hormones contribute to prospective risk for nonremitting posttraumatic stress disorder. Chronic Stress, 5, 24705470211032208.
Rieger, N. S., Guoynes, C. D., Monari, P. K., Hammond, E. R., Malone, C. L., & Marler, C. A. (2022). Neuroendocrine mechanisms of aggression in rodents. Motivation Science, 8(2), 81.
Hodes, G. E., Bangasser, D., Sotiropoulos, I., Kokras, N., & Dalla, C. (2024). Sex differences in stress response: Classical mechanisms and beyond. Current Neuropharmacology, 22(3), 475-492.
Wang, S., Mason, J., Southwick, S., Johnson, D., Lubin, H., & Charney, D. (1995). Relationships between thyroid hormones and symptoms in combat-related posttraumatic stress disorder. Psychosomatic Medicine, 57(4), 398-402.
Toloza, F. J., Mao, Y., Menon, L. P., George, G., Borikar, M., Erwin, P. J., ... & Maraka, S. (2020). Association of thyroid function with posttraumatic stress disorder: A systematic review and meta-analysis. Endocrine Practice, 26(10), 1173-1185.
Jung, S. J., Kang, J. H., Roberts, A. L., Nishimi, K., Chen, Q., Sumner, J. A., ... & Koenen, K. C. (2019). Posttraumatic stress disorder and incidence of thyroid dysfunction in women. Psychological Medicine, 49(15), 2551-2560.
Buras, A., Battle, L., Landers, E., Nguyen, T., & Vasudevan, N. (2014). Thyroid hormones regulate anxiety in the male mouse. Hormones and Behavior, 65(2), 88-96.
Frijling, J. L., van Zuiden, M., Nawijn, L., Koch, S. B., Neumann, I. D., Veltman, D. J., & Olff, M. (2015). Salivary oxytocin and vasopressin levels in police officers with and without post‐traumatic stress disorder. Journal of Neuroendocrinology, 27(10), 743-751.
Tan, O., Musullulu, H., Raymond, J. S., Wilson, B., Langguth, M., & Bowen, M. T. (2019). Oxytocin and vasopressin inhibit hyper-aggressive behaviour in socially isolated mice. Neuropharmacology, 156, 107573.
Wang, S. C., Lin, C. C., Chen, C. C., Tzeng, N. S., & Liu, Y. P. (2018). Effects of oxytocin on fear memory and neuroinflammation in a rodent model of posttraumatic stress disorder. International Journal of Molecular Sciences, 19(12), 3848.
Aliev, G., Beeraka, N. M., Nikolenko, V. N., Svistunov, A. A., Rozhnova, T., Kostyuk, S., ... & Kirkland, C. E. (2020). Neurophysiology and psychopathology underlying PTSD and recent insights into the PTSD therapies—a comprehensive review. Journal of Clinical Medicine, 9(9), 2951.
Invernizzi, A., Rechtman, E., Curtin, P., Papazaharias, D. M., Jalees, M., Pellecchia, A. C., ... & Horton, M. K. (2023). Functional changes in neural mechanisms underlying post-traumatic stress disorder in World Trade Center responders. Translational Psychiatry, 13(1), 239.
Voigt, J. D., Mosier, M., & Tendler, A. (2024). Systematic review and meta-analysis of neurofeedback and its effect on posttraumatic stress disorder. Frontiers in Psychiatry, 15, 1323485.