Перехресна молекулярна валідація внутрішньовидової структури Rutpela maculata (Insecta: Coleoptera: Cerambycidae)

Автор(и)

  • Андрій Заморока кафедра біології та екології Карпатського національного університету ім. В. Стефаника https://orcid.org/0000-0001-5692-7997
  • Олександр Зіненко Харківський національний університет ім. В. Каразіна https://orcid.org/0000-0001-5228-9940

DOI:

https://doi.org/10.15330/jpnubio.12.46-59

Ключові слова:

скрипунові жуки, молекулярна філогенія, молекулярна філогеографія, таксономія, систематика, фауна, ПЛР, ДНК баркодинг, Західна Палеарктика

Анотація

Rutpela (Rutpela) maculata (Poda, 1761) є одним із найпоширеніших і масових скрипунових жуків у Європі, з ареалом від Атлантичного узбережжя на заході до Південного Уралу на сході. Впродовж останніх десятиліть внутрішньовидова таксономія R. maculata за морфологічними ознаками була предметом дискусій, і консенсус щодо її організації досі відсутній. У цьому дослідженні проведено філогенетичний аналіз внутрішньовидової структури R. maculata на основі нових ДНК-баркодів із Хорватії, Італії, Словенії, Іспанії та України, а також доступних у публічних базах даних (GenBank, BOLD Systems, CaBOL). Результати показують наявність трьох чітко відокремлених гаплогруп (weRM, ceRM, esRM), кожна з яких асоційована з низкою морфологічних ознак, особливо меланізацією кінцівок у самців. Меланістичні форми гаплогрупи weRM у Південно-Західній Європі та гаплогрупи esRM у Кавказько-Анатолійському регіоні виникли ізольовано і незалежно, тоді як гаплогрупа ceRM має широке поширення по Європі – від Фінляндії та Норвегії до Італії та Хорватії. Дві гаплогрупи відповідають відомим підвидам – R. m. maculata (ceRM) та R. m. manca (weRM). Третя гаплогрупа esRM, раніше розглядалася як частина R. m. manca, виявилася окремою еволюційною лінією, спорідненою до ceRM, і формально запропонована як новий підвид Rutpela maculata orientalis ssp. nov. Генетичні відстані, відмінності в COI-послідовностях, морфологічні та географічні відмінності підтверджують цю таксономічну ревізію. Дослідження демонструє ефективність молекулярних філогенетичних підходів для вирішення давніх питань внутрішньовидової класифікації та визначення ареалів підвидів R. maculata.

Біографія автора

Олександр Зіненко, Харківський національний університет ім. В. Каразіна

Leading Researcher, Associate Professor

The Museum of Nature, and department of Zoology and Animal Ecology, School of Biology, V. N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, 61022, Ukraine

Посилання

Anisimova M & Gascuel O (2006) Approximate likelihood ratio test for branches: A fast, accurate and powerful alternative. Systematic Biology, 55(4):539–552. https://doi.org/10.1080/10635150600755453

Barek H, Sugumaran M, Ito S, Wakamatsu K (2017) Insect cuticular melanins are distinctly different from those of mammalian epidermal melanins. Pigment Cell Melanoma Res 31:384–392. https://doi.org/10.1111/pcmr.12672

Danilevsky ML (2015) Longicom beetles (Coleoptera, Cerambycoidea) of Russia and adjacent countries. Part 1. HSC.

Gascuel O (1997) BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution, 14(7):685–695. https://doi.org/10.1093/oxfordjournals.molbev.a025808

Gouy M, Tannier E, Comte N, & Parsons DP (2021) Seaview Version 5: A multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation. Methods in Molecular Biology, 2231:241–260. https://doi.org/10.1007/978-1-0716-1036-7_15

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, & Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3):307–321. https://doi.org/10.1093/sysbio/syq010

Haque MT, Khan MK, Herberstein ME (2024) Current evidence of climate‐driven colour change in insects and its impact on sexual signals. Ecol Evol 14: e11623. https://doi.org/10.1002/ece3.11623

Heyrovský L (1936) Dritter Beitrag zur Kenntnis der Gruppe Lepturini (Col., Ceramb.). Časopis České Společnosti Entomologické, Praha 33:52–57

Korlević P, McAlister E, Mayho M, Makunin A, Flicek P, & Lawniczak MKN (2021) A minimally morphologically destructive approach for DNA retrieval and whole-genome shotgun sequencing of pinned historic Dipteran vector species. Genome Biology and Evolution, 13(10). https://doi.org/10.1093/gbe/evab226

Kutama DM, Minnaar IA, Starostová Z, Clusella‐Trullas S (2024) Developmental plasticity of melanisation in a beetle reveals sex‐specific responses and performance costs. Ecol Entomol 49:624–634. https://doi.org/10.1111/een.13333

Löbl I, Smetana A (eds) (2010) Catalogue of Palaearctic Coleoptera, Vol. 6. Chrysomeloidea. Apollo Books, Stenstrup

Makunin A, Korlević P, Park N, Goodwin S, Waterhouse RM, von Wyschetzki K, Jacob CG, Davies R, Kwiatkowski D, St. Laurent B, Ayala D, & Lawniczak MKN (2022) A targeted amplicon sequencing panel to simultaneously identify mosquito species and Plasmodium presence across the entire Anopheles genus. Molecular Ecology Resources, 22(1):28–44. https://doi.org/10.1111/1755-0998.13436

Mulsant E (1839) Histoire Naturelle des Coléoptères de France. Longicornes. Maison, Paris

Özdikmen H, Mercan N, Cihan N, Özbek H (2012) Subspecific status of Rutpela maculata (Poda, 1761) (Coleoptera: Cerambycidae: Lepturinae). Munis Entomol Zool 7:516–522

Özdikmen H (2021) A discussion on taxonomic position of Rutpela maculata manca (Schaufuss, 1863) (Cerambycidae: Lepturinae: Lepturini). Munis Entomol Zool 16:411–418

Pic M (1933) Notes diverses, nouveautés (Suite.). L'Échange, Revue Linnéenne 49:1–2

Pic M (1937) Notes diverses, nouveautés (Suite.). L'Échange, Revue Linnéenne 53:13–15

Pic M (1945) Coléoptères du globe (suite). L'Échange, Revue Linnéenne 61:13–16

Poda N (1761) Insecta Musei Græcensis, quæ in ordines, genera et species Juxta Systema Naturæ Caroli Linnæi digessit Nicolaus Poda. Widmanstad, Vienna.

Podaný Č (1963) Nouvelles formes de Cérambycides (Col.). Bull Soc Entomol Mulhouse (Jan–Feb 1963):9–10

Rapuzzi P, Sama G (2006) Cerambycidae nuovi o interessanti per la fauna di Sicilia (Insecta: Coleoptera: Cerambycidae). Quad Studi Nat Romagna 23:157–172

Sama G (1996) Contribution à la connaissance des Longicornes de Grèce et d'Asie Mineure (Coleoptera, Cerambycidae) Biocosme Mésogéen, Nice 12(4):101–116

Semaniuk DV, Zamoroka AM (2020) Preliminary phylogenetic analysis of Lepturini (Insecta: Coleoptera: Cerambycidae). In: XVI International scientific conference for students and PhD students "Youth and Progress of Biology", Lviv, p. 121

Srivathsan A, Lee L, Katoh K, Hartop E, Kutty SN, Wong J, Yeo D, & Meier R (2021) ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biology, 19(1). https://doi.org/10.1186/s12915-021-01141-x

Srivathsan A, Feng V, Suárez D, Emerson B, & Meier R (2024) ONTbarcoder 2.0: Rapid species discovery and identification with real-time barcoding facilitated by Oxford Nanopore R10.4. Cladistics, 40(2):192–203. https://doi.org/10.1111/cla.12566

Sivell O, Sivell D, Barclay MVL, Crowley LM (2023) The genome sequence of a longhorn beetle, Rutpela maculata (Poda, 1769). Wellcome Open Res 8:579. https://doi.org/10.12688/wellcomeopenres.20500.1

Sugumaran M, Barek H (2016) Critical analysis of the melanogenic pathway in insects and higher animals. Int J Mol Sci 17:1753. https://doi.org/10.3390/ijms17101753

Vitali F (2018) Atlas of the Insects of the Grand-Duchy of Luxembourg: Coleoptera, Cerambycidae. Ferrantia 79, Musée national d’histoire naturelle, Luxembourg

Zamoroka AM (2022a) The longhorn beetles (Coleoptera: Cerambycidae) of Ukraine: Results of two centuries of research. Biosyst Divers 30:46–74. https://doi.org/10.15421/012206

Zamoroka AM (2022b) Molecular revision of Rhagiini sensu lato (Coleoptera, Cerambycidae): Paraphyly, intricate evolution and novel taxonomy. Biosyst Divers 30:295–309. https://doi.org/10.15421/012232

Zamoroka AM, Trócoli S, Shparyk VYu, Semaniuk DV (2022) Polyphyly of the genus Stenurella (Coleoptera, Cerambycidae): Consensus of morphological and molecular data. Biosyst Divers 30:119–136. https://doi.org/10.15421/012212

##submission.downloads##

Опубліковано

2025-12-15

Як цитувати

Заморока, А., & Зіненко, О. (2025). Перехресна молекулярна валідація внутрішньовидової структури Rutpela maculata (Insecta: Coleoptera: Cerambycidae). Журнал Прикарпатського національного університету імені Василя Стефаника. Біологія, 12, 46–59. https://doi.org/10.15330/jpnubio.12.46-59

Номер

Розділ

Експериментальні статті

Схожі статті

Ви також можете розпочати розширений пошук схожих статей для цієї статті.