Inhibition of α-Synuclein Aggregation by Polyphenols

Authors

DOI:

https://doi.org/10.15330/jpnubio.12.87-100

Keywords:

α-synuclein, Parkinson’s disease, amyloid fibril, polyphenols.

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder marked by intracellular Lewy bodies, composed mainly of amyloid fibrils formed by α-synuclein (αSyn). Native αSyn is a soluble intrinsically disordered protein, but in PD it misfolds into a pathological β-sheet structure that aggregates, impairs mitochondrial function, triggers inflammation, and ultimately leads to neuronal death. Because αSyn aggregation proceeds through multistep nucleation and rapid fibril elongation, inhibiting this process—particularly by blocking fibril growth at the ends—is a promising therapeutic strategy. This review focuses on polyphenols as inhibitors of αSyn amyloid fibril aggregation. Polyphenols modulate aggregation through diverse mechanisms, including stabilization of monomers, redirection into non-toxic off-pathway oligomers (e.g., EGCG, Resveratrol), disruption of existing fibrils (Baicalein), and covalent modification of αSyn lysine residues (Quercetin, Hydroxytyrosol). Importantly, gut microbiota-derived metabolites of dietary polyphenols (such as 3-HPPA) can cross the blood–brain barrier and strongly attenuate αSyn seeding, underscoring their therapeutic potential in PD.

Author Biography

Volodymyr Shvadchak, Vasyl Stefanyk Carpathian national university, Ivano-Frankivsk, Ukraine

PhD, associate professor, department of biochemistry and biotechnology Vasyl Stefanyk Carpathian national university, Ivano-Frankivsk, Ukraine

References

Abioye R, Okagu O, Udenigwe C (2022) Inhibition of Islet Amyloid Polypeptide Fibrillation by Structurally Diverse Phenolic Compounds and Fibril Disaggregation Potential of Rutin and Quercetin. J Agric Food Chem 70:392-402. https://doi.org/10.1021/acs.jafc.1c06918

Afitska K, Fucikova A, Shvadchak V, Yushchenko D (2019) alpha-Synuclein aggregation at low concentrations. Biochim Biophys Acta Proteins Proteom 1867:701-709. https://https://doi.org/10.1016/j.bbapap.2019.05.003

Aktas E, Hanagasi H, Ozgenturk N (2025) Levodopa and Plant-Derived Bioactive Compounds in Parkinson's Disease: Mechanisms, Efficacy, and Future Perspectives. CNS Neurosci Ther 31:e70540. https://https://doi.org/10.1111/cns.70540

Alam P, Bousset L, Melki R, Otzen D (2019) alpha-synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J Neurochem 150:522-534. https://doi.org/10.1111/jnc.14808

Alghamdi A, Birch D, Vyshemirsky V, Rolinski O (2022) Impact of the Flavonoid Quercetin on beta-Amyloid Aggregation Revealed by Intrinsic Fluorescence. J Phys Chem B 126:7229-7237. https://https://doi.org/10.1021/acs.jpcb.2c02763

Alim M, Ma Q, Takeda K, Aizawa T, Matsubara M, Nakamura M, Asada A, Saito T, Kaji H, Yoshii M, Hisanaga S, Ueda K (2004) Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein. J Alzheimers Dis 6:435-442. https://https://doi.org/10.3233/jad-2004-6412

Alvarez-Berbel I, Espargaro A, Viayna A, Caballero A, Busquets M, Gamez P, Luque F, Sabate R (2022) Three to Tango: Inhibitory Effect of Quercetin and Apigenin on Acetylcholinesterase, Amyloid-beta Aggregation and Acetylcholinesterase-Amyloid Interaction. Pharmaceutics 14:11 https://doi.org/10.3390/pharmaceutics14112342

Ardah M, Paleologou K, Lv G, Abul Khair S, Kazim A, Minhas S, Al-Tel T, Al-Hayani A, Haque M, Eliezer D, El-Agnaf O (2014) Structure activity relationship of phenolic acid inhibitors of alpha-synuclein fibril formation and toxicity. Front Aging Neurosci 6:197. https://doi.org/10.3389/fnagi.2014.00197

Basellini M, Granadino-Roldan J, Torres-Ortega P, Simmini G, Rubio-Martinez J, Marin S, Cappelletti G, Cascante M, Canuelo A. (2025) Oleuropein Aglycone, an Olive Polyphenol, Influences Alpha-Synuclein Aggregation and Exerts Neuroprotective Effects in Different Parkinson's Disease Models. Mol Neurobiol 62:15741-15758. https://doi.org/10.1007/s12035-025-05208-6

Bell R, Vendruscolo M (2021) Modulation of the Interactions Between alpha-Synuclein and Lipid Membranes by Post-translational Modifications. Front Neurol 12:661117. https://doi.org/10.3389/fneur.2021.661117

Breydo L, Newland B, Zhang H, Rosser A, Werner C, Uversky V, Wang W (2016) A hyperbranched dopamine-containing PEG-based polymer for the inhibition of alpha-synuclein fibrillation. Biochem Biophys Res Commun 469:830-835. https://doi.org/10.1016/j.bbrc.2015.12.060

Buell A, Galvagnion C, Gaspar R, Sparr E, Vendruscolo M, Knowles T, Linse S, Dobson C (2014) Solution conditions determine the relative importance of nucleation and growth processes in alpha-synuclein aggregation. Proc Natl Acad Sci U S A 111:7671-7676. https://doi.org/10.1073/pnas.1315346111

Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton M, Sudhof T (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663-1667. https://doi.org/10.1126/science.1195227

Canuelo A (2025) Olive polyphenols as modulators of amyloid aggregation: mechanisms and implications for neurodegenerative diseases. Food Funct 16:8658-8679. https://doi.org/10.1039/d5fo03331d

Chai C, Lim K (2013) Genetic insights into sporadic Parkinson's disease pathogenesis. Curr Genomics 14:486-501. https://doi.org/10.2174/1389202914666131210195808

Chau E, Kim H, Shin J, Martinez A, Kim J (2021) Inhibition of alpha-synuclein aggregation by AM17, a synthetic resveratrol derivative. Biochem Biophys Res Commun 574:85-90. https://doi.org/10.1016/j.bbrc.2021.08.049

de Rijk M, Breteler M, Graveland G, Ott A, Grobbee D, van der Meche F, Hofman A (1995) Prevalence of Parkinson's disease in the elderly: the Rotterdam Study. Neurology 45:2143-2146. https://doi.org/10.1212/wnl.45.12.2143

Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S, Singleton A, Olanow C, Merchant K, Bezard E, Petsko G, Meissner W (2015) Targeting alpha-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurol 14:855-866. https://doi.org/10.1016/S1474-4422(15)00006-X

Di Rosa G, Brunetti G, Scuto M, Trovato Salinaro A, Calabrese E, Crea R, Schmitz-Linneweber C, Calabrese V, Saul N (2020) Healthspan Enhancement by Olive Polyphenols in C. elegans Wild Type and Parkinson's Models. Int J Mol Sci 21:11 https://doi.org/10.3390/ijms21113893

Fongaro B, Cappelletto E, Sosic A, Spolaore B, Polverino de Laureto P (2022) 3,4-Dihydroxyphenylethanol and 3,4-dihydroxyphenylacetic acid affect the aggregation process of E46K variant of alpha-synuclein at different extent: Insights into the interplay between protein dynamics and catechol effect. Protein Sci 31:e4356. https://doi.org/10.1002/pro.4356

Foscolou A, Critselis E, Panagiotakos D (2018) Olive oil consumption and human health: A narrative review. Maturitas 118:60-66. https://doi.org/10.1016/j.maturitas.2018.10.013

Galkin M, Priss A, Kyriukha Y, Shvadchak V (2024) Navigating alpha-Synuclein Aggregation Inhibition: Methods, Mechanisms, and Molecular Targets. Chem Rec 24:e202300282. https://doi.org/10.1002/tcr.202300282

Gautam S, Karmakar S, Bose A, Chowdhury P (2014) beta-cyclodextrin and curcumin, a potent cocktail for disaggregating and/or inhibiting amyloids: a case study with alpha-synuclein. Biochemistry 53:4081-4083. https://doi.org/10.1021/bi500642f

Guerrero-Ferreira R, Kovacik L, Ni D, Stahlberg H (2020) New insights on the structure of alpha-synuclein fibrils using cryo-electron microscopy. Curr Opin Neurobiol 61:89-95. https://doi.org/10.1016/j.conb.2020.01.014

Haaxma C, Bloem B, Borm G, Oyen W, Leenders K, Eshuis S, Booij J, Dluzen D, Horstink M (2007) Gender differences in Parkinson's disease. J Neurol Neurosurg Psychiatry 78:819-824. https://doi.org/10.1136/jnnp.2006.103788

Hashimoto M, Kawahara K, Bar-On P, Rockenstein E, Crews L, Masliah E (2004) The Role of alpha-synuclein assembly and metabolism in the pathogenesis of Lewy body disease. J Mol Neurosci 24:343-352. https://doi.org/10.1385/JMN:24:3:343

Horne R, Wilson-Godber J, Gonzalez Diaz A, Brotzakis Z, Seal S, Gregory R, Possenti A, Chia S, Vendruscolo M (2024) Using Generative Modeling to Endow with Potency Initially Inert Compounds with Good Bioavailability and Low Toxicity. J Chem Inf Model 64:590-596. https://doi.org/10.1021/acs.jcim.3c01777

Hornedo-Ortega R, Alvarez-Fernandez M, Cerezo A, Richard T, Troncoso A, Garcia-Parrilla M (2016) Protocatechuic Acid: Inhibition of Fibril Formation, Destabilization of Preformed Fibrils of Amyloid-beta and alpha-Synuclein, and Neuroprotection. J Agric Food Chem 64:7722-7732. https://doi.org/10.1021/acs.jafc.6b03217

Horsley J, Jovcevski B, Pukala T, Abell A (2022) Designer D-peptides targeting the N-terminal region of alpha-synuclein to prevent parkinsonian-associated fibrilization and cytotoxicity. Biochim Biophys Acta Proteins Proteom 1870:140826. https://doi.org/10.1016/j.bbapap.2022.140826

Hsu L, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong, J, Takenouchi T, Hashimoto M, Masliah E (2000) alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401-410. https://doi.org/10.1016/s0002-9440(10)64553-1

Hu Q, Uversky V, Huang M, Kang H, Xu F, Liu X, Lian L, Liang Q, Jiang H, Liu A, Zhang C, Pan-Montojo F, Zhu S (2016) Baicalein inhibits alpha-synuclein oligomer formation and prevents progression of alpha-synuclein accumulation in a rotenone mouse model of Parkinson's disease. Biochim Biophys Acta 1862:1883-1890. https://doi.org/10.1016/j.bbadis.2016.07.008

Illes-Toth E, Rempel D, Gross M (2024) Exploration of Resveratrol as a Potent Modulator of alpha-Synuclein Fibril Formation. ACS Chem Neurosci 15:503-516. https://doi.org/10.1021/acschemneuro.3c00571

Inciardi I, Rizzotto E, Gregoris F, Fongaro B, Sosic A, Minervini G, Polverino de Laureto P (2025) Catechol-induced covalent modifications modulate the aggregation tendency of alpha-synuclein: An in-solution and in-silico study. Biofactors 51:e2086. https://doi.org/10.1002/biof.2086

Inden M, Takagi A, Kitai H, Ito T, Kurita H, Honda R, Kamatari Y, Nozaki S, Wen X, Hijioka M, Kitamura Y, Hozumi I (2021) Kaempferol Has Potent Protective and Antifibrillogenic Effects for alpha-Synuclein Neurotoxicity In Vitro. Int J Mol Sci 22:21 https://doi.org/10.3390/ijms222111484

Jellinger K (2022) Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 10:3 https://doi.org/10.3390/biomedicines10030599

Jimenez-Aliaga K, Bermejo-Bescos P, Benedi J, Martin-Aragon S (2011) Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci 89:939-945. https://doi.org/10.1016/j.lfs.2011.09.023

Kemperman R, Bolca S, Roger L, Vaughan E (2010) Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology (Reading) 156:3224-3231. https://doi.org/10.1099/mic.0.042127-0

King K, Bevan D, Brown A (2022) Molecular Dynamics Simulations Indicate Aromaticity as a Key Factor in the Inhibition of IAPP((20-29)) Aggregation. ACS Chem Neurosci 13:1615-1626. https://doi.org/10.1021/acschemneuro.2c00025

Klein C, Westenberger A (2012) Genetics of Parkinson's disease. Cold Spring Harb Perspect Med 2:a008888. https://doi.org/10.1101/cshperspect.a008888

Kumar S, Krishnakumar V, Morya V, Gupta S, Datta B (2019) Nanobiocatalyst facilitated aglycosidic quercetin as a potent inhibitor of tau protein aggregation. Int J Biol Macromol 138:168-180. https://doi.org/10.1016/j.ijbiomac.2019.07.081

Lam H, Graber M, Gentry K, Bieschke J (2016) Stabilization of alpha-Synuclein Fibril Clusters Prevents Fragmentation and Reduces Seeding Activity and Toxicity. Biochemistry 55:675-685. https://doi.org/10.1021/acs.biochem.5b01168

Lashuel H, Overk C, Oueslati A, Masliah E (2013) The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14:38-48. https://doi.org/10.1038/nrn3406

Levin J, Schmidt F, Boehm C, Prix C, Botzel K, Ryazanov S, Leonov A, Griesinger C, Giese A (2014) The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset. Acta Neuropathol 127:779-780. https://doi.org/10.1007/s00401-014-1265-3

Li B, Ge P, Murray K, Sheth P, Zhang M, Nair G, Sawaya M, Shin W, Boyer D, Ye S, Eisenberg D, Zhou Z, Jiang L (2018) Cryo-EM of full-length alpha-synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun, 9:3609. https://doi.org/10.1038/s41467-018-05971-2

Li J, Zhu M, Manning-Bog A, Di Monte D, Fink, A (2004) Dopamine and L-dopa disaggregate amyloid fibrils: implications for Parkinson's and Alzheimer's disease. FASEB J 18:962-964. https://doi.org/10.1096/fj.03-0770fje

Liang F, Wan Y, Schaak D, Ward J, Shen X, Tanzi R, Zhang C, Quan Q (2017) Nanoplasmonic fiber tip probe detects significant reduction of intracellular Alzheimer's disease-related oligomers by curcumin. Sci Rep, 7:5722. https://doi.org/10.1038/s41598-017-05619-z

Madine J, Doig A, Middleton D (2008) Design of an N-methylated peptide inhibitor of alpha-synuclein aggregation guided by solid-state NMR. J Am Chem Soc 130:7873-7881. https://doi.org/10.1021/ja075356q

Manzanza N, Sedlackova, Kalaria R (2021) Alpha-Synuclein Post-translational Modifications: Implications for Pathogenesis of Lewy Body Disorders. Front Aging Neurosci 13:690293. https://doi.org/10.3389/fnagi.2021.690293

Marotta N, Lin Y, Lewis Y, Ambroso M, Zaro B, Roth M, Arnold D, Langen R, Pratt M (2015) O-GlcNAc modification blocks the aggregation and toxicity of the protein alpha-synuclein associated with Parkinson's disease. Nat Chem 7:913-920. https://doi.org/10.1038/nchem.2361

Mirzaei-Behbahani B, Meratan A, Moosakhani B, Mohammad-Zaheri M, Mousavi-Jarrahi Z, Nikfarjam N, Shahsavani M, Saboury A (2024) Efficient inhibition of amyloid fibrillation and cytotoxicity of alpha-synuclein and human insulin using biosynthesized silver nanoparticles decorated by green tea polyphenols. Sci Rep 14:3907. https://doi.org/10.1038/s41598-024-54464-4

Muller T (2012) Drug therapy in patients with Parkinson's disease. Transl Neurodegener 1:10. https://doi.org/10.1186/2047-9158-1-10

Oliveri V (2019) Toward the discovery and development of effective modulators of alpha-synuclein amyloid aggregation. Eur J Med Chem 167:10-36. https://doi.org/10.1016/j.ejmech.2019.01.045

Ono K, Yamada M (2006) Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. J Neurochem 97:105-115. https://doi.org/10.1111/j.1471-4159.2006.03707.x

Pena-Diaz S, Garcia-Pardo J, Ventura S (2023) Development of Small Molecules Targeting alpha-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 15:3. https://doi.org/10.3390/pharmaceutics15030839

Radbakhsh S, Barreto G, Bland A, Sahebkar A (2021) Curcumin: A small molecule with big functionality against amyloid aggregation in neurodegenerative diseases and type 2 diabetes. Biofactors 47:570-586. https://doi.org/10.1002/biof.1735

Raza C, Anjum R, Shakeel N (2019) Parkinson's disease: Mechanisms, translational models and management strategies. Life Sci 226:77-90. https://doi.org/10.1016/j.lfs.2019.03.057

Rezaei Kamelabad M, Jahanbin Sardroodi J, Rastkar Ebrahimzadeh A, Ajamgard M (2021) Influence of curcumin and rosmarinic acid on disrupting the general properties of Alpha-Synuclein oligomer: Molecular dynamics simulation. J Mol Graph Model 107:107963. https://doi.org/10.1016/j.jmgm.2021.107963

Rocha Cabrero F, Morrison E (2024) Lewy Bodies. StatPearls Publishing StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK536956/

Scott D, Tabarean I, Tang Y, Cartier A, Masliah E, Roy S (2010) A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration. J Neurosci, 30:8083-8095. https://doi.org/10.1523/JNEUROSCI.1091-10.2010

Shvadchak V, Claessens M, Subramaniam V (2015) Fibril breaking accelerates alpha-synuclein fibrillization. J Phys Chem B 119:1912-1918. https://doi.org/10.1021/jp5111604

Siracusa R, Scuto M, Fusco R, Trovato A, Ontario M, Crea R, Di Paola R, Cuzzocrea S, Calabrese V (2020) Anti-inflammatory and Anti-oxidant Activity of Hidrox((R)) in Rotenone-Induced Parkinson's Disease in Mice. Antioxidants (Basel) 9:9 https://doi.org/10.3390/antiox9090824

Spillantini M, Schmidt M, Lee V, Trojanowski J, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839-840. https://doi.org/10.1038/42166

Szego E, Boss F, Komnig D, Gartner C, Hofs L, Shaykhalishahi H, Wordehoff M, Saridaki T, Schulz B, Hoyer W, Falkenburger B (2021) A beta-Wrapin Targeting the N-Terminus of alpha-Synuclein Monomers Reduces Fibril-Induced Aggregation in Neurons. Front Neurosci 15:696440. https://doi.org/10.3389/fnins.2021.696440

Takahashi R, Ono K, Takamura Y, Mizuguchi M, Ikeda T, Nishijo H, Yamada M (2015) Phenolic compounds prevent the oligomerization of alpha-synuclein and reduce synaptic toxicity. J Neurochem 134:943-955. https://doi.org/10.1111/jnc.13180

Tavanti F, Pedone A, Menziani M (2020) Insights into the Effect of Curcumin and (-)-Epigallocatechin-3-Gallate on the Aggregation of Abeta(1-40) Monomers by Means of Molecular Dynamics. Int J Mol Sci 21:15 https://doi.org/10.3390/ijms21155462

Wang D, Ho L, Faith J, Ono K, Janle E, Lachcik P, Cooper B, Jannasch A, D'Arcy B, Williams B, Ferruzzi M, Levine S, Zhao W, Dubner L, Pasinetti G (2015) Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease beta-amyloid oligomerization. Mol Nutr Food Res 59:1025-1040. https://doi.org/10.1002/mnfr.201400544

Wu L, Chu L, Pang Y, Huo J, Cao H, Tian Q, Gao Q (2024) Effects of dietary supplements, foods, and dietary patterns in Parkinson's disease: meta-analysis and systematic review of randomized and crossover studies. Eur J Clin Nutr 78:365-375. https://doi.org/10.1038/s41430-024-01411-1

Wu L, Velander P, Brown A, Wang Y, Liu D, Bevan D, Zhang S, Xu B (2021) Rosmarinic Acid Potently Detoxifies Amylin Amyloid and Ameliorates Diabetic Pathology in a Transgenic Rat Model of Type 2 Diabetes. ACS Pharmacol Transl Sci 4:1322-1337. https://doi.org/10.1021/acsptsci.1c00028

Yamasaki T, Ono K, Ho L, Pasinetti G (2020) Gut Microbiome-Modified Polyphenolic Compounds Inhibit alpha-Synuclein Seeding and Spreading in alpha-Synucleinopathies. Front Neurosci 14:398. https://doi.org/10.3389/fnins.2020.00398

Yao Y, Tang Y, Zhou Y, Yang Z, Wei G (2022) Baicalein exhibits differential effects and mechanisms towards disruption of alpha-synuclein fibrils with different polymorphs. Int J Biol Macromol 220:316-325. https://doi.org/10.1016/j.ijbiomac.2022.08.088

Zella M, Metzdorf J, Ostendorf F, Maass F, Muhlack S, Gold R, Haghikia A, Tonges L (2019) Novel Immunotherapeutic Approaches to Target Alpha-Synuclein and Related Neuroinflammation in Parkinson's Disease. Cells 8:2 https://doi.org/10.3390/cells8020105

Zhang L, Yu X, Ji M, Liu S, Wu X, Wang Y, Liu R (2018) Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T alpha-synuclein mouse model of Parkinson's disease. Food Funct 9:6414-6426. https://doi.org/10.1039/c8fo00964c

Zhu M, Han S, Fink A (2013) Oxidized quercetin inhibits alpha-synuclein fibrillization. Biochim Biophys Acta 1830:2872-2881. https://doi.org/10.1016/j.bbagen.2012.12.027

Zhytniakivska O, Chaturvedi T, Thomsen M (2025) Plant-Based Inhibitors of Protein Aggregation. Biomolecules 15:4 https://doi.org/10.3390/biom15040481

Downloads

Published

2025-12-15

How to Cite

Shturmak, A., & Shvadchak, V. (2025). Inhibition of α-Synuclein Aggregation by Polyphenols. Journal of Vasyl Stefanyk Precarpathian National University. Biology, 12, 87–100. https://doi.org/10.15330/jpnubio.12.87-100

Issue

Section

Review articles

Similar Articles

You may also start an advanced similarity search for this article.